Collins David J, O'Rorke Richard, Devendran Citsabehsan, Ma Zhichao, Han Jongyoon, Neild Adrian, Ai Ye
Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev Lett. 2018 Feb 16;120(7):074502. doi: 10.1103/PhysRevLett.120.074502.
Acoustic fields have been widely used for manipulation of particles and cells within microfluidic systems. In this Letter, we explore a novel acoustofluidic phenomenon for particle patterning and focusing, where a periodic acoustic pressure field is produced parallel to internal channel boundaries with the imposition of either a traveling or standing surface acoustic wave (SAW). This effect results from the propagation and intersection of edge waves from the channel walls according to the Huygens-Fresnel principle and classical wave fronts from the substrate-fluid interface. We demonstrate versatile control over this effect to produce both one- and two-dimensional acoustic patterning from one-dimensional SAW fields and its utility for continuous particle focusing. Uniquely, this channel-guided acoustic focusing permits the generation of robust acoustic fields without channel resonance conditions and particle focusing positions that are difficult or impossible to produce otherwise.
声场已被广泛用于微流体系统中对颗粒和细胞的操控。在本信函中,我们探索了一种用于颗粒图案化和聚焦的新型声流体现象,即在施加行波或驻波表面声波(SAW)的情况下,平行于内部通道边界产生周期性声压场。这种效应是根据惠更斯 - 菲涅耳原理,由通道壁的边缘波与基底 - 流体界面的经典波前的传播和相交产生的。我们展示了对这种效应的多功能控制,以从一维SAW场产生一维和二维声学图案化及其在连续颗粒聚焦方面的效用。独特的是,这种通道引导的声学聚焦允许在没有通道共振条件的情况下产生强大的声场,以及产生难以或无法通过其他方式产生的颗粒聚焦位置。