Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
Department of Mechanical Engineering, Virginia Polytechnical Institute and State University, Blacksburg, VA 24061, USA.
Sci Adv. 2024 Aug 9;10(32):eado8992. doi: 10.1126/sciadv.ado8992. Epub 2024 Aug 7.
Acoustic tweezers have gained substantial interest in biology, engineering, and materials science for their label-free, precise, contactless, and programmable manipulation of small objects. However, acoustic tweezers cannot independently manipulate multiple microparticles simultaneously. This study introduces acousto-dielectric tweezers capable of independently manipulating multiple microparticles and precise control over intercellular distances and cyclical cell pairing and separation for detailed cell-cell interaction analysis. Our acousto-dielectric tweezers leverage the competition between acoustic radiation forces, generated by standing surface acoustic waves (SAWs), and dielectrophoretic (DEP) forces, induced by gradient electric fields. Modulating these fields allows for the precise positioning of individual microparticles at points where acoustic radiation and DEP forces are in equilibrium. This mechanism enables the simultaneous movement of multiple microparticles along specified paths as well as cyclical cell pairing and separation. We anticipate our acousto-dielectric tweezers to have enormous potential in colloidal assembly, cell-cell interaction studies, disease diagnostics, and tissue engineering.
声镊在生物学、工程学和材料科学领域引起了广泛的关注,因为它们可以实现对小物体的无标记、精确、非接触和可编程操作。然而,声镊无法独立地同时操纵多个微粒子。本研究介绍了一种能够独立操纵多个微粒子的声电镊,并能够精确控制细胞间距离和周期性的细胞配对与分离,从而进行详细的细胞-细胞相互作用分析。我们的声电镊利用了由驻波表面声波(SAW)产生的声辐射力与梯度电场引起的介电泳(DEP)力之间的竞争。调节这些场可以实现单个微粒子在声辐射力和 DEP 力达到平衡的位置的精确定位。这种机制使得多个微粒子能够沿着指定的路径同时移动,以及周期性的细胞配对和分离。我们预计我们的声电镊在胶体组装、细胞-细胞相互作用研究、疾病诊断和组织工程等领域具有巨大的潜力。