PHYMEDEXP, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHRU Montpellier, Montpellier, France.
EA 4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France.
Int J Cardiol. 2018 May 1;258:207-216. doi: 10.1016/j.ijcard.2017.12.004.
The interplay between oxidative stress and other signaling pathways in the contractile machinery regulation during cardiac stress and its consequences on cardiac function remains poorly understood. We evaluated the effect of the crosstalk between β-adrenergic and redox signaling on post-translational modifications of sarcomeric regulatory proteins, Myosin Binding Protein-C (MyBP-C) and Troponin I (TnI).
We mimicked in vitro high level of physiological cardiac stress by forcing rat hearts to produce high levels of oxidized glutathione. This led to MyBP-C S-glutathionylation associated with lower protein kinase A (PKA) dependent phosphorylations of MyBP-C and TnI, increased myofilament Ca sensitivity, and decreased systolic and diastolic properties of the isolated perfused heart. Moderate physiological cardiac stress achieved in vivo with a single 35 min exercise (Low stress induced by exercise, LSE) increased TnI and cMyBP-C phosphorylations and improved cardiac function in vivo (echocardiography) and ex-vivo (isolated perfused heart). High stress induced by exercise (HSE) altered strongly oxidative stress markers and phosphorylations were unchanged despite increased PKA activity. HSE led to in vivo intrinsic cardiac dysfunction associated with myofilament Ca sensitivity defects. To limit protein S-glutathionylation after HSE, we treated rats with N-acetylcysteine (NAC). NAC restored the ability of PKA to modulate myofilament Ca sensitivity and prevented cardiac dysfunction observed in HSE animals.
Under cardiac stress, adrenergic and oxidative signaling pathways work in concert to alter myofilament properties and are key regulators of cardiac function.
在心脏应激过程中,氧化应激与调节收缩机制的其他信号通路之间的相互作用及其对心脏功能的影响仍知之甚少。我们评估了β-肾上腺素能和氧化还原信号转导之间的串扰对肌球蛋白结合蛋白-C(MyBP-C)和肌钙蛋白 I(TnI)的翻译后修饰的影响。
我们通过迫使大鼠心脏产生高水平的氧化型谷胱甘肽,模拟体外高水平的生理性心脏应激。这导致 MyBP-C 的 S-谷胱甘肽化,与 MyBP-C 和 TnI 的蛋白激酶 A(PKA)依赖性磷酸化降低、肌球蛋白丝 Ca 敏感性增加以及分离灌注心脏的收缩和舒张性能降低有关。通过单次 35 分钟运动(运动引起的低应激,LSE)在体内实现适度的生理性心脏应激,增加了 TnI 和 cMyBP-C 的磷酸化,并改善了体内(超声心动图)和体外(分离灌注心脏)的心脏功能。运动引起的高应激(HSE)强烈改变了氧化应激标志物,尽管 PKA 活性增加,但磷酸化没有改变。HSE 导致体内固有心脏功能障碍,伴有肌球蛋白丝 Ca 敏感性缺陷。为了限制 HSE 后蛋白质的 S-谷胱甘肽化,我们用 N-乙酰半胱氨酸(NAC)处理大鼠。NAC 恢复了 PKA 调节肌球蛋白丝 Ca 敏感性的能力,并防止了在 HSE 动物中观察到的心脏功能障碍。
在心脏应激下,肾上腺素能和氧化应激信号通路协同作用,改变肌球蛋白丝的性质,是心脏功能的关键调节因子。