Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
Center for Structural Biology, VIB, Flanders, Belgium.
Sci Adv. 2018 Mar 14;4(3):eaap9714. doi: 10.1126/sciadv.aap9714. eCollection 2018 Mar.
Bacterial protein synthesis is intricately connected to metabolic rate. One of the ways in which bacteria respond to environmental stress is through posttranslational modifications of translation factors. Translation elongation factor Tu (EF-Tu) is methylated and phosphorylated in response to nutrient starvation upon entering stationary phase, and its phosphorylation is a crucial step in the pathway toward sporulation. We analyze how phosphorylation leads to inactivation of EF-Tu. We provide structural and biophysical evidence that phosphorylation of EF-Tu at T382 acts as an efficient switch that turns off protein synthesis by decoupling nucleotide binding from the EF-Tu conformational cycle. Direct modifications of the EF-Tu switch I region or modifications in other regions stabilizing the β-hairpin state of switch I result in an effective allosteric trap that restricts the normal dynamics of EF-Tu and enables the evasion of the control exerted by nucleotides on G proteins. These results highlight stabilization of a phosphorylation-induced conformational trap as an essential mechanism for phosphoregulation of bacterial translation and metabolism. We propose that this mechanism may lead to the multisite phosphorylation state observed during dormancy and stationary phase.
细菌的蛋白质合成与代谢率密切相关。细菌应对环境压力的方式之一是通过翻译因子的翻译后修饰。当进入静止期时,翻译延伸因子 Tu(EF-Tu)会因营养饥饿而发生甲基化和磷酸化,其磷酸化是进入孢子形成途径的关键步骤。我们分析了磷酸化如何导致 EF-Tu 失活。我们提供了结构和生物物理证据,表明 EF-Tu 在 T382 的磷酸化充当有效的开关,通过将核苷酸结合与 EF-Tu 构象循环分离来关闭蛋白质合成。EF-Tu 开关 I 区域的直接修饰或稳定开关 I 的β发夹状态的其他修饰会导致有效的变构陷阱,限制 EF-Tu 的正常动力学,并使核苷酸对 G 蛋白的控制失效。这些结果强调了稳定磷酸化诱导的构象陷阱作为细菌翻译和代谢磷酸化调节的重要机制。我们提出,这种机制可能导致休眠和静止期观察到的多位点磷酸化状态。