Cancer Survival Group, Faculty of Epidemiology and Population Health, Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
Biostatistics. 2022 Jan 13;23(1):101-119. doi: 10.1093/biostatistics/kxaa017.
In population-based cancer studies, net survival is a crucial measure for population comparison purposes. However, alternative measures, namely the crude probability of death (CPr) and the number of life years lost (LYL) due to death according to different causes, are useful as complementary measures for reflecting different dimensions in terms of prognosis, treatment choice, or development of a control strategy. When the cause of death (COD) information is available, both measures can be estimated in competing risks setting using either cause-specific or subdistribution hazard regression models or with the pseudo-observation approach through direct modeling. We extended the pseudo-observation approach in order to model the CPr and the LYL due to different causes when information on COD is unavailable or unreliable (i.e., in relative survival setting). In a simulation study, we assessed the performance of the proposed approach in estimating regression parameters and examined models with different link functions that can provide an easier interpretation of the parameters. We showed that the pseudo-observation approach performs well for both measures and we illustrated their use on cervical cancer data from the England population-based cancer registry. A tutorial showing how to implement the method in R software is also provided.
在基于人群的癌症研究中,净生存率是人群比较的重要指标。然而,替代指标,即粗死亡率(CPr)和因不同原因导致的生命年损失(LYL)数量,作为反映预后、治疗选择或控制策略发展的不同方面的补充指标是有用的。当死亡原因(COD)信息可用时,可以使用基于特定原因或亚分布风险回归模型或通过直接建模的伪观测方法在竞争风险设置中估计这两个指标。我们扩展了伪观测方法,以便在 COD 信息不可用或不可靠(即相对生存率设置)时对不同原因导致的 CPr 和 LYL 进行建模。在一项模拟研究中,我们评估了所提出方法在估计回归参数方面的性能,并研究了具有不同链接函数的模型,这些模型可以更轻松地解释参数。我们表明,伪观测方法对这两个指标的表现都很好,并在来自英格兰基于人群的癌症登记处的宫颈癌数据上说明了它们的使用。还提供了一个教程,展示了如何在 R 软件中实现该方法。