Suppr超能文献

无需死因信息直接建模癌症死亡的粗概率和因癌症导致的寿命损失年数:相对生存环境下的一种伪观察方法。

Direct modeling of the crude probability of cancer death and the number of life years lost due to cancer without the need of cause of death: a pseudo-observation approach in the relative survival setting.

机构信息

Cancer Survival Group, Faculty of Epidemiology and Population Health, Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.

Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.

出版信息

Biostatistics. 2022 Jan 13;23(1):101-119. doi: 10.1093/biostatistics/kxaa017.

Abstract

In population-based cancer studies, net survival is a crucial measure for population comparison purposes. However, alternative measures, namely the crude probability of death (CPr) and the number of life years lost (LYL) due to death according to different causes, are useful as complementary measures for reflecting different dimensions in terms of prognosis, treatment choice, or development of a control strategy. When the cause of death (COD) information is available, both measures can be estimated in competing risks setting using either cause-specific or subdistribution hazard regression models or with the pseudo-observation approach through direct modeling. We extended the pseudo-observation approach in order to model the CPr and the LYL due to different causes when information on COD is unavailable or unreliable (i.e., in relative survival setting). In a simulation study, we assessed the performance of the proposed approach in estimating regression parameters and examined models with different link functions that can provide an easier interpretation of the parameters. We showed that the pseudo-observation approach performs well for both measures and we illustrated their use on cervical cancer data from the England population-based cancer registry. A tutorial showing how to implement the method in R software is also provided.

摘要

在基于人群的癌症研究中,净生存率是人群比较的重要指标。然而,替代指标,即粗死亡率(CPr)和因不同原因导致的生命年损失(LYL)数量,作为反映预后、治疗选择或控制策略发展的不同方面的补充指标是有用的。当死亡原因(COD)信息可用时,可以使用基于特定原因或亚分布风险回归模型或通过直接建模的伪观测方法在竞争风险设置中估计这两个指标。我们扩展了伪观测方法,以便在 COD 信息不可用或不可靠(即相对生存率设置)时对不同原因导致的 CPr 和 LYL 进行建模。在一项模拟研究中,我们评估了所提出方法在估计回归参数方面的性能,并研究了具有不同链接函数的模型,这些模型可以更轻松地解释参数。我们表明,伪观测方法对这两个指标的表现都很好,并在来自英格兰基于人群的癌症登记处的宫颈癌数据上说明了它们的使用。还提供了一个教程,展示了如何在 R 软件中实现该方法。

相似文献

8
Goodness of fit tests for estimating equations based on pseudo-observations.基于伪观测值的估计方程的拟合优度检验。
Lifetime Data Anal. 2019 Apr;25(2):189-205. doi: 10.1007/s10985-018-9427-6. Epub 2018 Feb 27.

本文引用的文献

5
Using pseudo-observations for estimation in relative survival.使用伪观测值进行相对生存率估计。
Biostatistics. 2019 Jul 1;20(3):384-399. doi: 10.1093/biostatistics/kxy008.
6
Goodness of fit tests for estimating equations based on pseudo-observations.基于伪观测值的估计方程的拟合优度检验。
Lifetime Data Anal. 2019 Apr;25(2):189-205. doi: 10.1007/s10985-018-9427-6. Epub 2018 Feb 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验