Suppr超能文献

在门控和对齐的碳纳米管中的量子限制下的子带等离子体。

Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes.

机构信息

Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.

Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA.

出版信息

Nat Commun. 2018 Mar 16;9(1):1121. doi: 10.1038/s41467-018-03381-y.

Abstract

Confined electrons collectively oscillate in response to light, resulting in a plasmon resonance whose frequency is determined by the electron density and the size and shape of the confinement structure. Plasmons in metallic particles typically occur in the classical regime where the characteristic quantum level spacing is negligibly small compared to the plasma frequency. In doped semiconductor quantum wells, quantum plasmon excitations can be observed, where the quantization energy exceeds the plasma frequency. Such intersubband plasmons occur in the mid- and far-infrared ranges and exhibit a variety of dynamic many-body effects. Here, we report the observation of intersubband plasmons in carbon nanotubes, where both the quantization and plasma frequencies are larger than those of typical quantum wells by three orders of magnitude. As a result, we observed a pronounced absorption peak in the near-infrared. Specifically, we observed the near-infrared plasmon peak in gated films of aligned single-wall carbon nanotubes only for probe light polarized perpendicular to the nanotube axis and only when carriers are present either in the conduction or valence band. Both the intensity and frequency of the peak were found to increase with the carrier density, consistent with the plasmonic nature of the resonance. Our observation of gate-controlled quantum plasmons in aligned carbon nanotubes will not only pave the way for the development of carbon-based near-infrared optoelectronic devices but also allow us to study the collective dynamic response of interacting electrons in one dimension.

摘要

束缚电子集体响应光的振荡,导致等离子体共振,其频率由电子密度以及限制结构的大小和形状决定。金属颗粒中的等离子体通常出现在经典区域,其中特征量子能级间距与等离子体频率相比可以忽略不计。在掺杂半导体量子阱中,可以观察到量子等离子体激发,其中量子化能量超过等离子体频率。这种子带间等离子体出现在中红外和远红外范围内,并表现出各种动态多体效应。在这里,我们报告了在碳纳米管中观察到的子带间等离子体,其中量子化和等离子体频率比典型的量子阱大三个数量级。因此,我们在近红外观察到了一个明显的吸收峰。具体来说,我们只在平行于碳纳米管轴的栅极薄膜中观察到了近红外等离子体峰,并且只有当载流子存在于导带或价带中时才会出现。峰值的强度和频率都被发现随着载流子密度的增加而增加,这与共振的等离子体性质一致。我们在排列的碳纳米管中观察到的栅控量子等离子体不仅为开发基于碳的近红外光电器件铺平了道路,还使我们能够研究一维相互作用电子的集体动态响应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed2/5856781/1cb0d2e5ce3f/41467_2018_3381_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验