Department of Physical Sciences, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598.
Department of Physical Sciences, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12662-12667. doi: 10.1073/pnas.1816251115. Epub 2018 Nov 20.
In cavity quantum electrodynamics, optical emitters that are strongly coupled to cavities give rise to polaritons with characteristics of both the emitters and the cavity excitations. We show that carbon nanotubes can be crystallized into chip-scale, two-dimensionally ordered films and that this material enables intrinsically ultrastrong emitter-cavity interactions: Rather than interacting with external cavities, nanotube excitons couple to the near-infrared plasmon resonances of the nanotubes themselves. Our polycrystalline nanotube films have a hexagonal crystal structure, ∼25-nm domains, and a 1.74-nm lattice constant. With this extremely high nanotube density and nearly ideal plasmon-exciton spatial overlap, plasmon-exciton coupling strengths reach 0.5 eV, which is 75% of the bare exciton energy and a near record for room-temperature ultrastrong coupling. Crystallized nanotube films represent a milestone in nanomaterials assembly and provide a compelling foundation for high-ampacity conductors, low-power optical switches, and tunable optical antennas.
在腔量子电动力学中,与腔强耦合的光学发射器产生具有发射器和腔激发特性的极化激元。我们表明,碳纳米管可以结晶成芯片级的二维有序薄膜,并且这种材料能够实现本征的超强发射器-腔相互作用:纳米管激子不是与外部腔相互作用,而是与纳米管本身的近红外等离子体共振耦合。我们的多晶纳米管薄膜具有六方晶体结构、~25nm 的畴和 1.74nm 的晶格常数。由于极高的纳米管密度和近乎理想的等离子激元-激子空间重叠,等离子激元-激子耦合强度达到 0.5eV,这是裸激子能量的 75%,是室温下超强耦合的近记录。结晶纳米管薄膜代表了纳米材料组装的一个里程碑,为高容量导体、低功耗光开关和可调谐光天线提供了引人注目的基础。