Suppr超能文献

工作记忆的独特功能和结构神经基础。

Distinct functional and structural neural underpinnings of working memory.

机构信息

Department of Psychology, University of Georgia, 125 Baldwin Street, Athens, GA 30602, United States.

Department of Psychology, University of Georgia, 125 Baldwin Street, Athens, GA 30602, United States; Department of Psychiatry and Human Behavior, Brown University, Box G-A1, Providence, RI 02912, United States.

出版信息

Neuroimage. 2018 Jul 1;174:463-471. doi: 10.1016/j.neuroimage.2018.03.022. Epub 2018 Mar 15.

Abstract

Working memory (WM), the short-term abstraction and manipulation of information, is an essential neurocognitive process in daily functioning. Few studies have concurrently examined the functional and structural neural correlates of WM and the current study did so to characterize both overlapping and unique associations. Participants were a large sample of adults from the Human Connectome Project (N = 1064; 54% female) who completed an in-scanner visual N-back WM task. The results indicate a clear dissociation between BOLD activation during the WM task and brain structure in relation to performance. In particular, while activation in the middle frontal gyrus was positively associated with WM performance, cortical thickness in this region was inversely associated with performance. Additional unique associations with WM were BOLD activation in superior parietal lobule, cingulate, and fusiform gyrus and gray matter volume in the orbitofrontal cortex and cuneus. Across findings, substantially larger effects were observed for functional associations relative to structural associations. These results provide further evidence implicating frontoparietal subunits of the brain in WM. Moreover, these findings reveal the distinct, and in some cases opposing, roles of brain structure and neural activation in WM, highlighting the lack of homology between structure and function in relation to cognition.

摘要

工作记忆(WM)是信息的短期抽象和操作,是日常功能的重要神经认知过程。很少有研究同时检查 WM 的功能和结构神经相关性,而本研究就是为了描述两者的重叠和独特关联。参与者是来自人类连接组计划(HCP)的大量成年人样本(N=1064;女性占 54%),他们在扫描过程中完成了视觉 N 回 WM 任务。结果表明,在 WM 任务期间的大脑活动与大脑结构和表现之间存在明显的分离。具体来说,虽然额中回的激活与 WM 表现呈正相关,但该区域的皮质厚度与表现呈负相关。与 WM 相关的其他独特关联包括顶叶上回、扣带回和梭状回的 BOLD 激活,以及眶额皮质和楔前叶的灰质体积。总的来说,相对于结构关联,功能关联的影响要大得多。这些结果进一步表明,大脑的额顶叶亚单位与 WM 有关。此外,这些发现揭示了大脑结构和神经激活在 WM 中的不同作用,在某些情况下甚至是相反的作用,突出了认知方面结构和功能之间缺乏同构性。

相似文献

1
Distinct functional and structural neural underpinnings of working memory.
Neuroimage. 2018 Jul 1;174:463-471. doi: 10.1016/j.neuroimage.2018.03.022. Epub 2018 Mar 15.
2
Functional and structural correlates of working memory performance and stability in healthy older adults.
Brain Struct Funct. 2020 Jan;225(1):375-386. doi: 10.1007/s00429-019-02009-1. Epub 2019 Dec 23.
3
The neurodevelopmental differences of increasing verbal working memory demand in children and adults.
Dev Cogn Neurosci. 2016 Feb;17:19-27. doi: 10.1016/j.dcn.2015.10.008. Epub 2015 Nov 5.
4
Neural mechanisms of two different verbal working memory tasks: A VLSM study.
Neuropsychologia. 2018 Jul 1;115:25-41. doi: 10.1016/j.neuropsychologia.2018.03.003. Epub 2018 Mar 8.
5
The impact of abacus training on working memory and underlying neural correlates in young adults.
Neuroscience. 2016 Sep 22;332:181-90. doi: 10.1016/j.neuroscience.2016.06.051. Epub 2016 Jul 5.
6
An energy-efficient intrinsic functional organization of human working memory: A resting-state functional connectivity study.
Behav Brain Res. 2017 Jan 1;316:66-73. doi: 10.1016/j.bbr.2016.08.046. Epub 2016 Aug 25.
7
Dynamic shifts in brain network activation during supracapacity working memory task performance.
Hum Brain Mapp. 2015 Apr;36(4):1245-64. doi: 10.1002/hbm.22699. Epub 2014 Nov 24.
9
Neural correlates of training and transfer effects in working memory in older adults.
Neuroimage. 2016 Jul 1;134:236-249. doi: 10.1016/j.neuroimage.2016.03.068. Epub 2016 Apr 1.
10
Working memory load-dependent brain response predicts behavioral training gains in older adults.
J Neurosci. 2014 Jan 22;34(4):1224-33. doi: 10.1523/JNEUROSCI.2463-13.2014.

引用本文的文献

1
Effects of Ketamine on Frontoparietal Interactions in a Rule-Based Antisaccade Task in Macaque Monkeys.
J Neurosci. 2024 Dec 11;44(50):e1018232024. doi: 10.1523/JNEUROSCI.1018-23.2024.
2
Flexible adaptation of task-positive brain networks predicts efficiency of evidence accumulation.
Commun Biol. 2024 Jul 2;7(1):801. doi: 10.1038/s42003-024-06506-w.
3
Evaluating frontoparietal network topography for diagnostic markers of Alzheimer's disease.
Sci Rep. 2024 Jun 19;14(1):14135. doi: 10.1038/s41598-024-64699-w.
4
Neurophysiological and other features of working memory in older adults at risk for dementia.
Cogn Neurodyn. 2024 Jun;18(3):795-811. doi: 10.1007/s11571-023-09938-y. Epub 2023 Mar 4.
5
Do cognitive abilities reduce eyewitness susceptibility to the misinformation effect? A systematic review.
Psychon Bull Rev. 2024 Dec;31(6):2410-2436. doi: 10.3758/s13423-024-02512-5. Epub 2024 May 2.
6
A longitudinal study of the brain structure network changes in HIV patients with ANI: combined VBM with SCN.
Front Neurol. 2024 Apr 17;15:1388616. doi: 10.3389/fneur.2024.1388616. eCollection 2024.
9
An fMRI analysis of verbal and non-verbal working memory in people with a past history of opioid dependence.
Front Neurosci. 2023 Apr 5;17:1053500. doi: 10.3389/fnins.2023.1053500. eCollection 2023.
10
Brain Oscillations and Their Implications for Neurorehabilitation.
Brain Neurorehabil. 2021 Mar 23;14(1):e7. doi: 10.12786/bn.2021.14.e7. eCollection 2021 Mar.

本文引用的文献

1
Frontal Structural Neural Correlates of Working Memory Performance in Older Adults.
Front Aging Neurosci. 2017 Jan 4;8:328. doi: 10.3389/fnagi.2016.00328. eCollection 2016.
2
4
A longitudinal study: changes in cortical thickness and surface area during pubertal maturation.
PLoS One. 2015 Mar 20;10(3):e0119774. doi: 10.1371/journal.pone.0119774. eCollection 2015.
5
Clinical utility of the N-back task in functional neuroimaging studies of working memory.
J Clin Exp Neuropsychol. 2014;36(8):875-86. doi: 10.1080/13803395.2014.953039. Epub 2014 Sep 25.
6
Functional Specialization and Flexibility in Human Association Cortex.
Cereb Cortex. 2015 Oct;25(10):3654-72. doi: 10.1093/cercor/bhu217. Epub 2014 Sep 23.
7
BOLD response to working memory not related to cortical thickness during early adolescence.
Brain Res. 2013 Nov 6;1537:59-68. doi: 10.1016/j.brainres.2013.08.053. Epub 2013 Sep 4.
8
Complex span and n-back measures of working memory: a meta-analysis.
Psychon Bull Rev. 2013 Dec;20(6):1102-13. doi: 10.3758/s13423-013-0453-9.
9
Human Connectome Project informatics: quality control, database services, and data visualization.
Neuroimage. 2013 Oct 15;80:202-19. doi: 10.1016/j.neuroimage.2013.05.077. Epub 2013 May 24.
10
The WU-Minn Human Connectome Project: an overview.
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验