Suppr超能文献

脉冲神经元循环网络中的缓慢波动。

Slow fluctuations in recurrent networks of spiking neurons.

作者信息

Wieland Stefan, Bernardi Davide, Schwalger Tilo, Lindner Benjamin

机构信息

Bernstein Center for Computational Neuroscience Berlin, Philippstrasse 13, Haus 2, 10115 Berlin, Germany.

Physics Department of Humboldt University Berlin, Newtonstrasse 15, 12489 Berlin, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):040901. doi: 10.1103/PhysRevE.92.040901. Epub 2015 Oct 5.

Abstract

Networks of fast nonlinear elements may display slow fluctuations if interactions are strong. We find a transition in the long-term variability of a sparse recurrent network of perfect integrate-and-fire neurons at which the Fano factor switches from zero to infinity and the correlation time is minimized. This corresponds to a bifurcation in a linear map arising from the self-consistency of temporal input and output statistics. More realistic neural dynamics with a leak current and refractory period lead to smoothed transitions and modified critical couplings that can be theoretically predicted.

摘要

如果相互作用很强,快速非线性元件网络可能会表现出缓慢的波动。我们发现在一个由理想积分发放神经元组成的稀疏递归网络的长期变异性中存在一个转变,此时法诺因子从零切换到无穷大,且相关时间最小化。这对应于由时间输入和输出统计的自洽性产生的线性映射中的一个分岔。具有漏电电流和不应期的更现实的神经动力学导致了平滑的转变和可从理论上预测的修正临界耦合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验