Wieland Stefan, Bernardi Davide, Schwalger Tilo, Lindner Benjamin
Bernstein Center for Computational Neuroscience Berlin, Philippstrasse 13, Haus 2, 10115 Berlin, Germany.
Physics Department of Humboldt University Berlin, Newtonstrasse 15, 12489 Berlin, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):040901. doi: 10.1103/PhysRevE.92.040901. Epub 2015 Oct 5.
Networks of fast nonlinear elements may display slow fluctuations if interactions are strong. We find a transition in the long-term variability of a sparse recurrent network of perfect integrate-and-fire neurons at which the Fano factor switches from zero to infinity and the correlation time is minimized. This corresponds to a bifurcation in a linear map arising from the self-consistency of temporal input and output statistics. More realistic neural dynamics with a leak current and refractory period lead to smoothed transitions and modified critical couplings that can be theoretically predicted.
如果相互作用很强,快速非线性元件网络可能会表现出缓慢的波动。我们发现在一个由理想积分发放神经元组成的稀疏递归网络的长期变异性中存在一个转变,此时法诺因子从零切换到无穷大,且相关时间最小化。这对应于由时间输入和输出统计的自洽性产生的线性映射中的一个分岔。具有漏电电流和不应期的更现实的神经动力学导致了平滑的转变和可从理论上预测的修正临界耦合。