Suppr超能文献

光学相干断层扫描图像中手动睫状肌分割的变异性。

Variability of manual ciliary muscle segmentation in optical coherence tomography images.

作者信息

Chang Yu-Cherng, Liu Keke, Cabot Florence, Yoo Sonia H, Ruggeri Marco, Ho Arthur, Parel Jean-Marie, Manns Fabrice

机构信息

Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.

Biomedical Optics and Laser Laboratory, Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL, USA.

出版信息

Biomed Opt Express. 2018 Jan 25;9(2):791-800. doi: 10.1364/BOE.9.000791. eCollection 2018 Feb 1.

Abstract

Optical coherence tomography (OCT) offers new options for imaging the ciliary muscle allowing direct visualization. However, variation in image quality along the length of the muscle prevents accurate delineation and quantification of the muscle. Quantitative analyses of the muscle are accompanied by variability in segmentation between examiners and between sessions for the same examiner. In processes such as accommodation where changes in muscle thickness may be tens of microns- the equivalent of a small number of image pixels, differences in segmentation can influence the magnitude and potentially the direction of thickness change. A detailed analysis of variability in ciliary muscle thickness measurements was performed to serve as a benchmark for the extent of this variability in studies on the ciliary muscle. Variation between sessions and examiners were found to be insignificant but the magnitude of variation should be considered when interpreting ciliary muscle results.

摘要

光学相干断层扫描(OCT)为睫状肌成像提供了新的选择,可实现直接可视化。然而,沿肌肉长度方向的图像质量变化阻碍了对肌肉的精确描绘和量化。对肌肉的定量分析在不同检查者之间以及同一检查者在不同检查时段之间的分割存在变异性。在诸如调节等过程中,肌肉厚度变化可能只有几十微米——相当于少量图像像素,分割差异会影响厚度变化的幅度,甚至可能影响其方向。对睫状肌厚度测量的变异性进行了详细分析,以此作为睫状肌研究中这种变异性程度的基准。发现不同检查时段和检查者之间的变异性不显著,但在解释睫状肌结果时应考虑变异程度。

相似文献

1
Variability of manual ciliary muscle segmentation in optical coherence tomography images.
Biomed Opt Express. 2018 Jan 25;9(2):791-800. doi: 10.1364/BOE.9.000791. eCollection 2018 Feb 1.
3
CMS-NET: deep learning algorithm to segment and quantify the ciliary muscle in swept-source optical coherence tomography images.
Ther Adv Chronic Dis. 2023 Mar 14;14:20406223231159616. doi: 10.1177/20406223231159616. eCollection 2023.
4
Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging.
Biomed Opt Express. 2016 Mar 17;7(4):1351-64. doi: 10.1364/BOE.7.001351. eCollection 2016 Apr 1.
5
Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation.
Biomed Opt Express. 2013 Mar 1;4(3):466-80. doi: 10.1364/BOE.4.000466. Epub 2013 Feb 21.
6
A program to analyse optical coherence tomography images of the ciliary muscle.
Cont Lens Anterior Eye. 2015 Dec;38(6):402-8. doi: 10.1016/j.clae.2015.05.007. Epub 2015 Jun 10.
7
Ciliary muscle thickness profiles derived from optical coherence tomography images.
Biomed Opt Express. 2018 Oct 1;9(10):5100-5114. doi: 10.1364/BOE.9.005100.
8
Semiautomatic extraction algorithm for images of the ciliary muscle.
Optom Vis Sci. 2011 Feb;88(2):275-89. doi: 10.1097/OPX.0b013e3182044b94.
10
Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images.
Int J Cardiol. 2014 Apr 1;172(3):568-80. doi: 10.1016/j.ijcard.2014.01.071. Epub 2014 Jan 24.

引用本文的文献

2
CMS-NET: deep learning algorithm to segment and quantify the ciliary muscle in swept-source optical coherence tomography images.
Ther Adv Chronic Dis. 2023 Mar 14;14:20406223231159616. doi: 10.1177/20406223231159616. eCollection 2023.
4
Automated segmentation of the ciliary muscle in OCT images using fully convolutional networks.
Biomed Opt Express. 2022 Apr 21;13(5):2810-2823. doi: 10.1364/BOE.455661. eCollection 2022 May 1.
5
In vivo measurement of the attenuation coefficient of the sclera and ciliary muscle.
Biomed Opt Express. 2021 Jul 20;12(8):5089-5106. doi: 10.1364/BOE.427286. eCollection 2021 Aug 1.
7
Ciliary muscle thickness profiles derived from optical coherence tomography images.
Biomed Opt Express. 2018 Oct 1;9(10):5100-5114. doi: 10.1364/BOE.9.005100.

本文引用的文献

1
Ultrasound biomicroscopy value in evaluation of restoration of ciliary muscles contractility after cataract extraction.
Clin Ophthalmol. 2017 May 4;11:855-859. doi: 10.2147/OPTH.S131399. eCollection 2017.
2
Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging.
Biomed Opt Express. 2016 Mar 17;7(4):1351-64. doi: 10.1364/BOE.7.001351. eCollection 2016 Apr 1.
4
A program to analyse optical coherence tomography images of the ciliary muscle.
Cont Lens Anterior Eye. 2015 Dec;38(6):402-8. doi: 10.1016/j.clae.2015.05.007. Epub 2015 Jun 10.
5
Age-related changes in the anterior segment biometry during accommodation.
Invest Ophthalmol Vis Sci. 2015 Jun;56(6):3522-30. doi: 10.1167/iovs.15-16825.
6
Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation.
Biomed Opt Express. 2013 Mar 1;4(3):466-80. doi: 10.1364/BOE.4.000466. Epub 2013 Feb 21.
8
Diminished ciliary muscle movement on accommodation in myopia.
Exp Eye Res. 2012 Dec;105:9-14. doi: 10.1016/j.exer.2012.08.014. Epub 2012 Oct 12.
9
Changes in ciliary muscle thickness during accommodation in children.
Optom Vis Sci. 2012 May;89(5):727-37. doi: 10.1097/OPX.0b013e318253de7e.
10
Measuring changes in ciliary muscle thickness with accommodation in young adults.
Optom Vis Sci. 2012 May;89(5):719-26. doi: 10.1097/OPX.0b013e318252cadc.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验