Suppr超能文献

用于运动稳健、非接触式心率估计的有界卡尔曼滤波方法。

Bounded Kalman filter method for motion-robust, non-contact heart rate estimation.

作者信息

Prakash Sakthi Kumar Arul, Tucker Conrad S

机构信息

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, Pennsylvania 16801, USA.

School of Engineering Design, Technology and Professional Programs (SEDTAPP), Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, Pennsylvania 16801, USA.

出版信息

Biomed Opt Express. 2018 Jan 29;9(2):873-897. doi: 10.1364/BOE.9.000873. eCollection 2018 Feb 1.

Abstract

The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impractical for real-world scenarios wherein a patient may be in motion, or remotely connected to a healthcare provider through telehealth technologies. The algorithm aims to minimize motion artifacts such as blurring and noise due to head movements (uniform, random) by employing i) a blur identification and denoising algorithm for each frame and ii) a bounded Kalman filter technique for motion estimation and feature tracking. A case study is presented that demonstrates the feasibility of the algorithm in non-contact estimation of the pulse rate of subjects performing everyday head and body movements. The method in this paper outperforms state of the art rPPG methods in heart rate detection, as revealed by the benchmarked results.

摘要

这项研究的作者展示了在不同光照条件和运动类别下对心率的实时测量。这相对于现有的远程光电容积脉搏波描记法(rPPG)方法是一个进步,现有方法需要静态、可控的环境来检测心率,这使得它们在现实场景中不实用,因为在现实场景中患者可能处于运动状态,或者通过远程医疗技术与医疗服务提供者远程连接。该算法旨在通过采用以下方法来最小化由于头部运动(均匀、随机)导致的运动伪影,如模糊和噪声:i)针对每一帧的模糊识别和去噪算法,以及ii)用于运动估计和特征跟踪的有界卡尔曼滤波技术。本文给出了一个案例研究,证明了该算法在非接触式估计日常头部和身体运动受试者脉搏率方面的可行性。基准测试结果表明,本文提出的方法在心率检测方面优于现有最先进的rPPG方法。

相似文献

1
Bounded Kalman filter method for motion-robust, non-contact heart rate estimation.
Biomed Opt Express. 2018 Jan 29;9(2):873-897. doi: 10.1364/BOE.9.000873. eCollection 2018 Feb 1.
3
Heart rate estimation from facial videos with motion interference using T-SNE-based signal separation.
Biomed Opt Express. 2022 Aug 2;13(9):4494-4509. doi: 10.1364/BOE.457774. eCollection 2022 Sep 1.
4
AND-rPPG: A novel denoising-rPPG network for improving remote heart rate estimation.
Comput Biol Med. 2022 Feb;141:105146. doi: 10.1016/j.compbiomed.2021.105146. Epub 2021 Dec 17.
6
Exploiting spatial redundancy of image sensor for motion robust rPPG.
IEEE Trans Biomed Eng. 2015 Feb;62(2):415-25. doi: 10.1109/TBME.2014.2356291. Epub 2014 Sep 8.
7
Fusion Method to Estimate Heart Rate from Facial Videos Based on RPPG and RBCG.
Sensors (Basel). 2021 Oct 12;21(20):6764. doi: 10.3390/s21206764.
8
9
A new principle of pulse detection based on terahertz wave plethysmography.
Sci Rep. 2022 Apr 15;12(1):6347. doi: 10.1038/s41598-022-09801-w.
10
Evaluation of biases in remote photoplethysmography methods.
NPJ Digit Med. 2021 Jun 3;4(1):91. doi: 10.1038/s41746-021-00462-z.

引用本文的文献

1
Time evolution of piglet cerebral blood volume after resuscitation from hypoxic-ischemic insult.
Sci Rep. 2025 Jul 23;15(1):26806. doi: 10.1038/s41598-025-11898-8.
2
Video-based estimation of blood pressure.
PLoS One. 2025 Jan 30;20(1):e0311654. doi: 10.1371/journal.pone.0311654. eCollection 2025.
3
Deep learning and remote photoplethysmography powered advancements in contactless physiological measurement.
Front Bioeng Biotechnol. 2024 Jul 17;12:1420100. doi: 10.3389/fbioe.2024.1420100. eCollection 2024.
4
Developing technologies to assess vascular ageing: a roadmap from VascAgeNet.
Physiol Meas. 2024 Dec 30;45(12):121001. doi: 10.1088/1361-6579/ad548e.
5
Medicine 2032: The future of cardiovascular disease prevention with machine learning and digital health technology.
Am J Prev Cardiol. 2022 Aug 29;12:100379. doi: 10.1016/j.ajpc.2022.100379. eCollection 2022 Dec.
6
A Review of Image Processing Techniques for Deepfakes.
Sensors (Basel). 2022 Jun 16;22(12):4556. doi: 10.3390/s22124556.
7
Continuous Monitoring of Vital Signs Using Cameras: A Systematic Review.
Sensors (Basel). 2022 May 28;22(11):4097. doi: 10.3390/s22114097.
8
Evaluation of biases in remote photoplethysmography methods.
NPJ Digit Med. 2021 Jun 3;4(1):91. doi: 10.1038/s41746-021-00462-z.
9
Non-Contact Heart Rate Detection When Face Information Is Missing during Online Learning.
Sensors (Basel). 2020 Dec 8;20(24):7021. doi: 10.3390/s20247021.

本文引用的文献

1
Amplitude-selective filtering for remote-PPG.
Biomed Opt Express. 2017 Feb 28;8(3):1965-1980. doi: 10.1364/BOE.8.001965. eCollection 2017 Mar 1.
2
Comparison of Heart-Rate-Variability Recording With Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography.
Int J Sports Physiol Perform. 2017 Nov 1;12(10):1324-1328. doi: 10.1123/ijspp.2016-0668. Epub 2017 Dec 22.
3
Spectral-spatial fusion model for robust blood pulse waveform extraction in photoplethysmographic imaging.
Biomed Opt Express. 2016 Nov 1;7(12):4874-4885. doi: 10.1364/BOE.7.004874. eCollection 2016 Dec 1.
4
Illumination Variation-Resistant Video-Based Heart Rate Measurement Using Joint Blind Source Separation and Ensemble Empirical Mode Decomposition.
IEEE J Biomed Health Inform. 2017 Sep;21(5):1422-1433. doi: 10.1109/JBHI.2016.2615472. Epub 2016 Oct 6.
5
Motion limitations of non-contact photoplethysmography due to the optical and topological properties of skin.
Physiol Meas. 2016 May;37(5):N27-37. doi: 10.1088/0967-3334/37/5/N27. Epub 2016 Apr 21.
6
Computer-Vision-Guided Human Pulse Rate Estimation: A Review.
IEEE Rev Biomed Eng. 2016;9:91-105. doi: 10.1109/RBME.2016.2551778. Epub 2016 Apr 7.
7
ROI analysis for remote photoplethysmography on facial video.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:4938-41. doi: 10.1109/EMBC.2015.7319499.
8
Validity of the Polar V800 heart rate monitor to measure RR intervals at rest.
Eur J Appl Physiol. 2016 Mar;116(3):563-71. doi: 10.1007/s00421-015-3303-9. Epub 2015 Dec 26.
9
A Novel Algorithm for Remote Photoplethysmography: Spatial Subspace Rotation.
IEEE Trans Biomed Eng. 2016 Sep;63(9):1974-1984. doi: 10.1109/TBME.2015.2508602. Epub 2015 Dec 17.
10
Dynamic heart rate estimation using principal component analysis.
Biomed Opt Express. 2015 Oct 29;6(11):4610-8. doi: 10.1364/BOE.6.004610. eCollection 2015 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验