Suppr超能文献

解析过氧化物还原酶催化作用:剖析细菌AhpC的结合、过氧化及还原过程

Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC.

作者信息

Parsonage Derek, Nelson Kimberly J, Ferrer-Sueta Gerardo, Alley Samantha, Karplus P Andrew, Furdui Cristina M, Poole Leslie B

机构信息

Department of Biochemistry, ‡Center for Structural Biology, and §Section on Molecular Medicine in Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina 27157, United States.

出版信息

Biochemistry. 2015 Feb 24;54(7):1567-75. doi: 10.1021/bi501515w. Epub 2015 Feb 10.

Abstract

Peroxiredoxins make up a ubiquitous family of cysteine-dependent peroxidases that reduce hydroperoxide or peroxynitrite substrates through formation of a cysteine sulfenic acid (R-SOH) at the active site. In the 2-Cys peroxiredoxins, a second (resolving) cysteine reacts with the sulfenic acid to form a disulfide bond. For all peroxiredoxins, structural rearrangements in the vicinity of the active site cysteine(s) are necessary to allow disulfide bond formation and subsequent reductive recycling. In this study, we evaluated the rate constants for individual steps in the catalytic cycle of Salmonella typhimurium AhpC. Conserved Trp residues situated close to both peroxidatic and resolving cysteines in AhpC give rise to large changes in fluorescence during the catalytic cycle. For recycling, AhpF very efficiently reduces the AhpC disulfide, with a single discernible step and a rate constant of 2.3 × 10(7) M(-1) s(-1). Peroxide reduction was more complex and could be modeled as three steps, beginning with a reversible binding of H2O2 to the enzyme (k1 = 1.36 × 10(8) M(-1) s(-1), and k-1 = 53 s(-1)), followed by rapid sulfenic acid generation (620 s(-1)) and then rate-limiting disulfide bond formation (75 s(-1)). Using bulkier hydroperoxide substrates with higher Km values, we found that different efficiencies (kcat/Km) for turnover of AhpC with these substrates are primarily caused by their slower rates of binding. Our findings indicate that this bacterial peroxiredoxin exhibits rates for both reducing and oxidizing parts of the catalytic cycle that are among the fastest observed so far for this diverse family of enzymes.

摘要

过氧化物酶是一类普遍存在的半胱氨酸依赖性过氧化物酶家族,它们通过在活性位点形成半胱氨酸亚磺酸(R-SOH)来还原氢过氧化物或过氧亚硝酸盐底物。在2-半胱氨酸过氧化物酶中,第二个(分解)半胱氨酸与亚磺酸反应形成二硫键。对于所有过氧化物酶,活性位点半胱氨酸附近的结构重排对于二硫键形成和随后的还原循环是必要的。在本研究中,我们评估了鼠伤寒沙门氏菌AhpC催化循环中各个步骤的速率常数。AhpC中靠近过氧化物酶和分解半胱氨酸的保守色氨酸残基在催化循环中导致荧光发生大的变化。对于循环,AhpF非常有效地还原AhpC二硫键,有一个可辨别的步骤,速率常数为2.3×10⁷ M⁻¹ s⁻¹。过氧化物还原更复杂,可以模拟为三个步骤,首先是H₂O₂与酶的可逆结合(k₁ = 1.36×10⁸ M⁻¹ s⁻¹,k⁻₁ = 53 s⁻¹),然后是快速生成亚磺酸(620 s⁻¹),接着是限速二硫键形成(75 s⁻¹)。使用具有较高Km值的体积更大的氢过氧化物底物,我们发现AhpC对这些底物的不同周转效率(kcat/Km)主要是由它们较慢的结合速率引起的。我们的研究结果表明,这种细菌过氧化物酶在催化循环的还原和氧化部分所表现出的速率是迄今为止在这个多样的酶家族中观察到的最快速率之一。

相似文献

7
Experimentally Dissecting the Origins of Peroxiredoxin Catalysis.实验剖析过氧化物酶催化的起源。
Antioxid Redox Signal. 2018 Mar 1;28(7):521-536. doi: 10.1089/ars.2016.6922. Epub 2017 Apr 4.

引用本文的文献

本文引用的文献

8
Measurement of peroxiredoxin activity.过氧化物还原酶活性的测定。
Curr Protoc Toxicol. 2011 Aug;Chapter 7:Unit7.10. doi: 10.1002/0471140856.tx0710s49.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验