Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA.
Curr Opin Neurobiol. 2018 Aug;51:95-102. doi: 10.1016/j.conb.2018.03.001. Epub 2018 Mar 16.
Cells depend on the asymmetric distribution of their components for homeostasis, differentiation and movement. In no other cell type is this requirement more critical than in the neuron where complex structures are generated during process growth and elaboration and cargo is transported over distances several thousand times the cell body diameter. Microtubules act both as dynamic structural elements and as tracks for intracellular transport. Microtubules are mosaic polymers containing multiple tubulin isoforms functionalized with abundant posttranslational modifications that are asymmetrically distributed in neurons. An increasing body of evidence supports the hypothesis that the combinatorial information expressed through tubulin genetic and chemical diversity controls microtubule dynamics, mechanics and interactions with microtubule effectors and thus constitutes a 'tubulin code'. Here we give a brief overview of tubulin isoform usage and posttranslational modifications in the neuron, and highlight recent progress in understanding the molecular mechanisms of the tubulin code.
细胞依赖于其成分的不对称分布来维持其体内平衡、分化和运动。在没有其他细胞类型比神经元更需要这种要求,因为在神经元中,复杂的结构是在过程生长和细化过程中产生的,并且货物是在几千倍于细胞体直径的距离上运输的。微管既是动态结构元件,又是细胞内运输的轨道。微管是由多个微管蛋白异构体组成的镶嵌聚合物,这些异构体具有丰富的翻译后修饰,这些修饰在神经元中呈不对称分布。越来越多的证据支持这样一种假设,即通过微管遗传和化学多样性表达的组合信息控制微管动力学、力学以及与微管效应器的相互作用,从而构成了“微管密码”。在这里,我们简要概述了神经元中微管蛋白异构体的使用和翻译后修饰,并强调了理解微管密码分子机制的最新进展。