Suppr超能文献

耗竭葡萄糖会在肺鼠疫期间激活分解代谢物阻遏。

Depletion of Glucose Activates Catabolite Repression during Pneumonic Plague.

机构信息

Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA

Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.

出版信息

J Bacteriol. 2018 May 9;200(11). doi: 10.1128/JB.00737-17. Print 2018 Jun 1.

Abstract

Bacterial pathogenesis depends on changes in metabolic and virulence gene expression in response to changes within a pathogen's environment. The plague-causing pathogen, , requires expression of the gene encoding the Pla protease for progression of pneumonic plague. The catabolite repressor protein Crp, a global transcriptional regulator, may serve as the activator of in response to changes within the lungs as disease progresses. By using gene reporter fusions, the spatial and temporal activation of the and promoters was measured in a mouse model of pneumonic plague. In the lungs, was highly expressed in bacteria found within large aggregates resembling biofilms, while expression increased over time independent of the aggregated state. Increased expression of and correlated with a reduction in lung glucose levels. Deletion of the glucose-specific phosphotransferase system EIIBC (PtsG) of rescued glucose levels in the lungs, resulting in reduced expression of both and We propose that activation of expression during pneumonic plague is driven by an increase of both Crp and cAMP levels following consumption of available glucose in the lungs by Thus, Crp operates as a sensor linking the nutritional environment of the host to regulation of virulence gene expression. Using as a model for pneumonia, we discovered that glucose is rapidly consumed, leading to a catabolite-repressive environment in the lungs. As a result, expression of the gene encoding the plasminogen activator protease, a target of the catabolite repressor protein required for pathogenesis, is activated. Interestingly, expression of the catabolite repressor protein itself was also increased in the absence of glucose but only in biofilms. The data presented here demonstrate how a bacterial pathogen senses changes within its environment to coordinate metabolism and virulence gene expression.

摘要

细菌的发病机制取决于代谢和毒力基因表达的变化,以响应病原体环境内的变化。引起鼠疫的病原体 ,需要表达编码 Pla 蛋白酶的基因,以促进肺鼠疫的发展。代谢物阻遏蛋白 Crp 是一种全局转录调节剂,可能作为激活物,响应疾病进展中肺部内的变化。通过使用基因报告融合,在肺鼠疫的小鼠模型中测量了 和 启动子的时空激活。在肺部, 在类似于生物膜的大聚集体中发现的细菌中高度表达,而 表达随着时间的推移而增加,与聚集状态无关。 和 的表达增加与肺中葡萄糖水平降低相关。 中葡萄糖特异性磷酸转移酶系统 EIIBC(PtsG)的缺失挽救了肺部的葡萄糖水平,导致 和 的表达均降低。我们提出,在肺鼠疫期间 表达的激活是由 Crp 和 cAMP 水平的增加驱动的,这是由于肺部中可用葡萄糖的消耗。因此,Crp 作为一种传感器,将宿主的营养环境与毒力基因表达的调节联系起来。我们使用 作为肺炎模型,发现葡萄糖被迅速消耗,导致肺部中出现代谢物阻遏环境。结果,编码纤溶酶原激活蛋白酶的基因表达被激活,该蛋白酶是 发病机制所需的代谢物阻遏蛋白的靶标。有趣的是,在没有葡萄糖的情况下,代谢物阻遏蛋白本身的表达也增加,但仅在生物膜中。这里呈现的数据表明了一种细菌病原体如何感知其环境内的变化,以协调新陈代谢和毒力基因表达。

相似文献

1
Depletion of Glucose Activates Catabolite Repression during Pneumonic Plague.
J Bacteriol. 2018 May 9;200(11). doi: 10.1128/JB.00737-17. Print 2018 Jun 1.
2
Proteolysis of plasminogen activator inhibitor-1 by Yersinia pestis remodulates the host environment to promote virulence.
J Thromb Haemost. 2016 Sep;14(9):1833-43. doi: 10.1111/jth.13408. Epub 2016 Aug 19.
5
A plasminogen-activating protease specifically controls the development of primary pneumonic plague.
Science. 2007 Jan 26;315(5811):509-13. doi: 10.1126/science.1137195.
7
Impact of the Pla protease substrate α2-antiplasmin on the progression of primary pneumonic plague.
Infect Immun. 2015 Dec;83(12):4837-47. doi: 10.1128/IAI.01086-15. Epub 2015 Oct 5.
8
Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis.
Infect Immun. 2015 Nov 9;84(1):365-74. doi: 10.1128/IAI.01168-15. Print 2016 Jan.
9
Unveiling the dance of evolution: Pla-mediated cleavage of Ymt modulates the virulence dynamics of .
mBio. 2024 Aug 14;15(8):e0107524. doi: 10.1128/mbio.01075-24. Epub 2024 Jul 3.

引用本文的文献

1
Augmented Enterocyte Damage During and Coinfection.
Front Cell Infect Microbiol. 2022 May 16;12:866416. doi: 10.3389/fcimb.2022.866416. eCollection 2022.
2
Plasminogen Activator.
Biomolecules. 2020 Nov 14;10(11):1554. doi: 10.3390/biom10111554.
3
The Regulation of Bacterial Biofilm Formation by cAMP-CRP: A Mini-Review.
Front Microbiol. 2020 May 14;11:802. doi: 10.3389/fmicb.2020.00802. eCollection 2020.
5
The 24th Annual Midwest Microbial Pathogenesis Meeting.
J Bacteriol. 2018 Feb 26;200(11):e000950-18. doi: 10.1128/JB.00095-18.

本文引用的文献

1
SGLT1 Deficiency Turns Listeria Infection into a Lethal Disease in Mice.
Cell Physiol Biochem. 2017;42(4):1358-1365. doi: 10.1159/000479197. Epub 2017 Jul 14.
2
Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host-pathogen transcriptomes.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E791-E800. doi: 10.1073/pnas.1613405114. Epub 2017 Jan 17.
3
Proteolysis of plasminogen activator inhibitor-1 by Yersinia pestis remodulates the host environment to promote virulence.
J Thromb Haemost. 2016 Sep;14(9):1833-43. doi: 10.1111/jth.13408. Epub 2016 Aug 19.
4
Increased airway glucose increases airway bacterial load in hyperglycaemia.
Sci Rep. 2016 Jun 8;6:27636. doi: 10.1038/srep27636.
5
CRP Is an Activator of Yersinia pestis Biofilm Formation that Operates via a Mechanism Involving gmhA and waaAE-coaD.
Front Microbiol. 2016 Mar 8;7:295. doi: 10.3389/fmicb.2016.00295. eCollection 2016.
7
Pneumonic Plague: The Darker Side of Yersinia pestis.
Trends Microbiol. 2016 Mar;24(3):190-197. doi: 10.1016/j.tim.2015.11.008. Epub 2015 Dec 14.
8
Impact of the Pla protease substrate α2-antiplasmin on the progression of primary pneumonic plague.
Infect Immun. 2015 Dec;83(12):4837-47. doi: 10.1128/IAI.01086-15. Epub 2015 Oct 5.
10
Early emergence of Yersinia pestis as a severe respiratory pathogen.
Nat Commun. 2015 Jun 30;6:7487. doi: 10.1038/ncomms8487.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验