Suppr超能文献

纳米光束波导中的自旋-光子界面与自旋控制光子开关

Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide.

作者信息

Javadi Alisa, Ding Dapeng, Appel Martin Hayhurst, Mahmoodian Sahand, Löbl Matthias Christian, Söllner Immo, Schott Rüdiger, Papon Camille, Pregnolato Tommaso, Stobbe Søren, Midolo Leonardo, Schröder Tim, Wieck Andreas Dirk, Ludwig Arne, Warburton Richard John, Lodahl Peter

机构信息

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.

Department of Physics, University of Basel, Basel, Switzerland.

出版信息

Nat Nanotechnol. 2018 May;13(5):398-403. doi: 10.1038/s41565-018-0091-5. Epub 2018 Mar 19.

Abstract

The spin of an electron is a promising memory state and qubit. Connecting spin states that are spatially far apart will enable quantum nodes and quantum networks based on the electron spin. Towards this goal, an integrated spin-photon interface would be a major leap forward as it combines the memory capability of a single spin with the efficient transfer of information by photons. Here, we demonstrate such an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared in the ground state with a fidelity of up to 96%. Subsequently, the system is used to implement a single-spin photonic switch, in which the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates, single-photon transistors and the efficient generation of a photonic cluster state.

摘要

电子的自旋是一种很有前景的存储状态和量子比特。连接空间上相距甚远的自旋态将促成基于电子自旋的量子节点和量子网络。为实现这一目标,集成自旋-光子界面将是向前迈出的一大步,因为它将单个自旋的存储能力与光子的高效信息传输结合在一起。在此,我们展示了量子点中电子的自旋与纳米光子波导中的光子之间的这种高效且可光学编程的界面。自旋能够以高达96%的保真度确定性地制备到基态。随后,该系统被用于实现一个单自旋光子开关,其中电子的自旋态引导光子通过波导的流动。自旋-光子界面可能促成片上光子-光子门、单光子晶体管以及光子簇态的高效生成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验