Appel Martin Hayhurst, Tiranov Alexey, Javadi Alisa, Löbl Matthias C, Wang Ying, Scholz Sven, Wieck Andreas D, Ludwig Arne, Warburton Richard J, Lodahl Peter
Center for Hybrid Quantum Networks (Hy-Q), The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
Department of Physics, University of Basel, Klingelbergstraße 82, CH-4056 Basel, Switzerland.
Phys Rev Lett. 2021 Jan 8;126(1):013602. doi: 10.1103/PhysRevLett.126.013602.
Solid-state quantum dots are promising candidates for efficient light-matter interfaces connecting internal spin degrees of freedom to the states of emitted photons. However, selection rules prevent the combination of efficient spin control and optical cyclicity in this platform. By utilizing a photonic crystal waveguide we here experimentally demonstrate optical cyclicity up to ≈15 through photonic state engineering while achieving high fidelity spin initialization and coherent optical spin control. These capabilities pave the way towards scalable multiphoton entanglement generation and on-chip spin-photon gates.
固态量子点是将内部自旋自由度与发射光子态相连接的高效光与物质界面的有前途的候选者。然而,选择规则阻碍了该平台中高效自旋控制和光学循环性的结合。通过利用光子晶体波导,我们在此通过光子态工程实验证明了高达约15的光学循环性,同时实现了高保真度自旋初始化和相干光学自旋控制。这些能力为可扩展的多光子纠缠生成和片上自旋 - 光子门铺平了道路。