文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging.

作者信息

Ziemian Sabina, Löwa Norbert, Kosch Olaf, Bajj Daniel, Wiekhorst Frank, Schütz Gunnar

机构信息

MR and CT Contrast Media Research, Bayer AG, D-13353 Berlin, Germany.

Physikalisch-Technische Bundesanstalt, D-10587 Berlin, Germany.

出版信息

Nanomaterials (Basel). 2018 Mar 21;8(4):180. doi: 10.3390/nano8040180.


DOI:10.3390/nano8040180
PMID:29561782
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5923510/
Abstract

The optimization of iron oxide nanoparticles as tracers for magnetic particle imaging (MPI) alongside the development of data acquisition equipment and image reconstruction techniques is crucial for the required improvements in image resolution and sensitivity of MPI scanners. We present a large-scale water-based synthesis of multicore superparamagnetic iron oxide nanoparticles stabilized with dextran (MC-SPIONs). We also demonstrate the preparation of single core superparamagnetic iron oxide nanoparticles in organic media, subsequently coated with a poly(ethylene glycol) gallic acid polymer and phase transferred to water (SC-SPIONs). Our aim was to obtain long-term stable particles in aqueous media with high MPI performance. We found that the amplitude of the third harmonic measured by magnetic particle spectroscopy (MPS) at 10 mT is 2.3- and 5.8-fold higher than Resovist for the MC-SPIONs and SC-SPIONs, respectively, revealing excellent MPI potential as compared to other reported MPI tracer particle preparations. We show that the reconstructed MPI images of phantoms using optimized multicore and specifically single-core particles are superior to that of commercially available Resovist, which we utilize as a reference standard, as predicted by MPS.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/ec8b00b3ddb9/nanomaterials-08-00180-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/e03614938a7b/nanomaterials-08-00180-f0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/632e289979f3/nanomaterials-08-00180-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/8d486bb84d4a/nanomaterials-08-00180-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/c46d7fa4dfd5/nanomaterials-08-00180-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/f34b6588247e/nanomaterials-08-00180-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/e7ab34b99d5a/nanomaterials-08-00180-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/76081c2a5e71/nanomaterials-08-00180-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/ec8b00b3ddb9/nanomaterials-08-00180-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/e03614938a7b/nanomaterials-08-00180-f0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/632e289979f3/nanomaterials-08-00180-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/8d486bb84d4a/nanomaterials-08-00180-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/c46d7fa4dfd5/nanomaterials-08-00180-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/f34b6588247e/nanomaterials-08-00180-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/e7ab34b99d5a/nanomaterials-08-00180-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/76081c2a5e71/nanomaterials-08-00180-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf2/5923510/ec8b00b3ddb9/nanomaterials-08-00180-g007a.jpg

相似文献

[1]
Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging.

Nanomaterials (Basel). 2018-3-21

[2]
MPI Phantom Study with A High-Performing Multicore Tracer Made by Coprecipitation.

Nanomaterials (Basel). 2019-10-16

[3]
Comparison of commercial iron oxide-based MRI contrast agents with synthesized high-performance MPI tracers.

Biomed Tech (Berl). 2013-12

[4]
Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments.

Med Phys. 2013-7

[5]
Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells.

Int J Nanomedicine. 2014-10-29

[6]
Long circulating tracer tailored for magnetic particle imaging.

Nanotheranostics. 2021

[7]
Iron oxide nanoparticle-micelles (ION-micelles) for sensitive (molecular) magnetic particle imaging and magnetic resonance imaging.

PLoS One. 2013-2-20

[8]
Tuning surface coatings of optimized magnetite nanoparticle tracers for Magnetic Particle Imaging.

IEEE Trans Magn. 2015-2

[9]
Magnetic particle imaging: current developments and future directions.

Int J Nanomedicine. 2015-4-22

[10]
Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging.

Nanoscale. 2017-1-19

引用本文的文献

[1]
Multicore-based ferrofluids in zero field: initial magnetic susceptibility and self-assembly mechanisms.

Soft Matter. 2023-6-21

[2]
Recent Advances in Multimodal Molecular Imaging of Cancer Mediated by Hybrid Magnetic Nanoparticles.

Polymers (Basel). 2021-9-3

[3]
Imaging Constructs: The Rise of Iron Oxide Nanoparticles.

Molecules. 2021-6-5

[4]
Microemulsion Synthesis of Superparamagnetic Nanoparticles for Bioapplications.

Int J Mol Sci. 2021-1-4

[5]
The Applications of Magnetic Particle Imaging: From Cell to Body.

Diagnostics (Basel). 2020-10-9

[6]
MPI Phantom Study with A High-Performing Multicore Tracer Made by Coprecipitation.

Nanomaterials (Basel). 2019-10-16

[7]
Zero-Field and Field-Induced Interactions between Multicore Magnetic Nanoparticles.

Nanomaterials (Basel). 2019-5-9

本文引用的文献

[1]
One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate.

J Mater Chem B. 2014-7-28

[2]
The Relaxation Wall: Experimental Limits to Improving MPI Spatial Resolution by Increasing Nanoparticle Core size.

Biomed Phys Eng Express. 2017-6

[3]
Tomographic magnetic particle imaging of cancer targeted nanoparticles.

Nanoscale. 2017-12-7

[4]
Bacterial magnetosomes - nature's powerful contribution to MPI tracer research.

Nanoscale. 2017-5-11

[5]
Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging.

Nanoscale. 2017-1-19

[6]
Multi-color magnetic particle imaging for cardiovascular interventions.

Phys Med Biol. 2016-8-21

[7]
Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging.

Phys Med Biol. 2016-5-7

[8]
Ferrohydrodynamic modeling of magnetic nanoparticle harmonic spectra for magnetic particle imaging.

J Appl Phys. 2015-11-7

[9]
Magnetic Particle Imaging Tracers: State-of-the-Art and Future Directions.

J Phys Chem Lett. 2015-7-2

[10]
Magnetic particle imaging: current developments and future directions.

Int J Nanomedicine. 2015-4-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索