文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用共沉淀法制备的高性能多核示踪剂进行的心肌灌注显像剂模体研究。

MPI Phantom Study with A High-Performing Multicore Tracer Made by Coprecipitation.

作者信息

Kratz Harald, Mohtashamdolatshahi Azadeh, Eberbeck Dietmar, Kosch Olaf, Hauptmann Ralf, Wiekhorst Frank, Taupitz Matthias, Hamm Bernd, Schnorr Jörg

机构信息

Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, D-10117 Berlin, Germany.

Physikalisch-Technische Bundesanstalt, D-10587 Berlin, Germany.

出版信息

Nanomaterials (Basel). 2019 Oct 16;9(10):1466. doi: 10.3390/nano9101466.


DOI:10.3390/nano9101466
PMID:31623127
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6835925/
Abstract

Magnetic particle imaging (MPI) is a new imaging technique that detects the spatial distribution of magnetic nanoparticles (MNP) with the option of high temporal resolution. MPI relies on particular MNP as tracers with tailored characteristics for improvement of sensitivity and image resolution. For this reason, we developed optimized multicore particles (MCP 3) made by coprecipitation via synthesis of green rust and subsequent oxidation to iron oxide cores consisting of a magnetite/maghemite mixed phase. MCP 3 shows high saturation magnetization close to that of bulk maghemite and provides excellent magnetic particle spectroscopy properties which are superior to Resovist and any other up to now published MPI tracers made by coprecipitation. To evaluate the MPI characteristics of MCP 3 two kinds of tube phantoms were prepared and investigated to assess sensitivity, spatial resolution, artifact severity, and selectivity. Resovist was used as standard of comparison. For image reconstruction, the regularization factor was optimized, and the resulting images were investigated in terms of quantifying of volumes and iron content. Our results demonstrate the superiority of MCP 3 over Resovist for all investigated MPI characteristics and suggest that MCP 3 is promising for future experimental in vivo studies.

摘要

磁粒子成像(MPI)是一种新型成像技术,能够检测磁性纳米颗粒(MNP)的空间分布,具有高时间分辨率。MPI依赖于具有特定特性的MNP作为示踪剂,以提高灵敏度和图像分辨率。因此,我们通过共沉淀法,先合成绿锈,随后氧化成由磁铁矿/磁赤铁矿混合相组成的氧化铁核,开发出了优化的多核粒子(MCP 3)。MCP 3的饱和磁化强度接近块状磁赤铁矿,具有优异的磁粒子光谱特性,优于Resovist以及迄今公布的任何其他通过共沉淀法制备的MPI示踪剂。为评估MCP 3的MPI特性,制备并研究了两种管状体模,以评估灵敏度、空间分辨率、伪影严重程度和选择性。Resovist用作比较标准。对于图像重建,优化正则化因子,并根据体积和铁含量的量化对所得图像进行研究。我们的结果表明,在所有研究的MPI特性方面,MCP 3优于Resovist,这表明MCP 3在未来的体内实验研究中具有广阔前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/3b7b8f09cbef/nanomaterials-09-01466-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/62d4776d8110/nanomaterials-09-01466-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/16312e4b1d01/nanomaterials-09-01466-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/a9889e9b2202/nanomaterials-09-01466-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/3d1d3022bcf5/nanomaterials-09-01466-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/a342509cdd52/nanomaterials-09-01466-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/1107488c94f4/nanomaterials-09-01466-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/f47b20543352/nanomaterials-09-01466-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/bfb44ac601bf/nanomaterials-09-01466-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/9d547c147b20/nanomaterials-09-01466-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/0d464b8c9b72/nanomaterials-09-01466-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/3b7b8f09cbef/nanomaterials-09-01466-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/62d4776d8110/nanomaterials-09-01466-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/16312e4b1d01/nanomaterials-09-01466-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/a9889e9b2202/nanomaterials-09-01466-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/3d1d3022bcf5/nanomaterials-09-01466-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/a342509cdd52/nanomaterials-09-01466-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/1107488c94f4/nanomaterials-09-01466-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/f47b20543352/nanomaterials-09-01466-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/bfb44ac601bf/nanomaterials-09-01466-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/9d547c147b20/nanomaterials-09-01466-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/0d464b8c9b72/nanomaterials-09-01466-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6835925/3b7b8f09cbef/nanomaterials-09-01466-g011.jpg

相似文献

[1]
MPI Phantom Study with A High-Performing Multicore Tracer Made by Coprecipitation.

Nanomaterials (Basel). 2019-10-16

[2]
Tailored Magnetic Multicore Nanoparticles for Use as Blood Pool MPI Tracers.

Nanomaterials (Basel). 2021-6-10

[3]
In vivo magnetic particle imaging: angiography of inferior vena cava and aorta in rats using newly developed multicore particles.

Sci Rep. 2020-10-14

[4]
Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging.

Nanomaterials (Basel). 2018-3-21

[5]
In vitro and in vivo comparison of a tailored magnetic particle imaging blood pool tracer with Resovist.

Phys Med Biol. 2017-5-7

[6]
Novel magnetic multicore nanoparticles designed for MPI and other biomedical applications: From synthesis to first in vivo studies.

PLoS One. 2018-1-4

[7]
Comparison of commercial iron oxide-based MRI contrast agents with synthesized high-performance MPI tracers.

Biomed Tech (Berl). 2013-12

[8]
Synthetic routes to magnetic nanoparticles for MPI.

Biomed Tech (Berl). 2013-12

[9]
Labeling of mesenchymal stem cells for MRI with single-cell sensitivity.

Int J Nanomedicine. 2016-4-12

[10]
Characterization of the clinically approved MRI tracer resotran for magnetic particle imaging in a comparison study.

Phys Med Biol. 2024-7-1

引用本文的文献

[1]
Magnetic particle spectroscopy for Eu-VSOP quantification in intestinal inflammation: distinguishing nanoparticle signals from dietary contamination.

Nanoscale Adv. 2025-8-28

[2]
Advances in engineering nanoparticles for magnetic particle imaging (MPI).

Sci Adv. 2025-1-10

[3]
Post-synthesis Oxidation of Superparamagnetic Iron Oxide Nanoparticles to Enhance Magnetic Particle Imaging Performance.

ACS Appl Nano Mater. 2024-1-12

[4]
Tailored Magnetic Multicore Nanoparticles for Use as Blood Pool MPI Tracers.

Nanomaterials (Basel). 2021-6-10

[5]
Embracing Defects and Disorder in Magnetic Nanoparticles.

Adv Sci (Weinh). 2021-4

[6]
From Single-Core Nanoparticles in Ferrofluids to Multi-Core Magnetic Nanocomposites: Assembly Strategies, Structure, and Magnetic Behavior.

Nanomaterials (Basel). 2020-10-31

[7]
In vivo magnetic particle imaging: angiography of inferior vena cava and aorta in rats using newly developed multicore particles.

Sci Rep. 2020-10-14

[8]
Ex vivo magnetic particle imaging of vascular inflammation in abdominal aortic aneurysm in a murine model.

Sci Rep. 2020-7-24

本文引用的文献

[1]
The Contribution of Magnetic Nanoparticles to Ferrogel Biophysical Properties.

Nanomaterials (Basel). 2019-2-8

[2]
Unravelling the Thermal Decomposition Parameters for The Synthesis of Anisotropic Iron Oxide Nanoparticles.

Nanomaterials (Basel). 2018-10-29

[3]
In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring.

Theranostics. 2018-6-8

[4]
Improved sensitivity and limit-of-detection using a receive-only coil in magnetic particle imaging.

Phys Med Biol. 2018-7-2

[5]
Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging.

Nanomaterials (Basel). 2018-3-21

[6]
Novel magnetic multicore nanoparticles designed for MPI and other biomedical applications: From synthesis to first in vivo studies.

PLoS One. 2018-1-4

[7]
Magnetic particle imaging: from proof of principle to preclinical applications.

Phys Med Biol. 2017-6-23

[8]
In vitro and in vivo comparison of a tailored magnetic particle imaging blood pool tracer with Resovist.

Phys Med Biol. 2017-5-7

[9]
Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging.

Nanoscale. 2017-1-19

[10]
Magnetic Particle Imaging (MPI): Experimental Quantification of Vascular Stenosis Using Stationary Stenosis Phantoms.

PLoS One. 2017-1-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索