文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Magnetic particle imaging: current developments and future directions.

作者信息

Panagiotopoulos Nikolaos, Duschka Robert L, Ahlborg Mandy, Bringout Gael, Debbeler Christina, Graeser Matthias, Kaethner Christian, Lüdtke-Buzug Kerstin, Medimagh Hanne, Stelzner Jan, Buzug Thorsten M, Barkhausen Jörg, Vogt Florian M, Haegele Julian

机构信息

Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, Germany.

Institute of Medical Engineering, University of Lübeck, Lübeck, Germany.

出版信息

Int J Nanomedicine. 2015 Apr 22;10:3097-114. doi: 10.2147/IJN.S70488. eCollection 2015.


DOI:10.2147/IJN.S70488
PMID:25960650
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4411024/
Abstract

Magnetic particle imaging (MPI) is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs' response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution. Essentially, it is the SPIONs' superparamagnetic characteristics, the fact that they are magnetically saturable, and the harmonic composition of the SPIONs' response that make MPI possible at all. As SPIONs are the essential element of MPI, the development of customized nanoparticles is pursued with the greatest effort by many groups. Their objective is the creation of a SPION or a conglomerate of particles that will feature a much higher MPI performance than nanoparticles currently available commercially. A particle's MPI performance and suitability is characterized by parameters such as the strength of its MPI signal, its biocompatibility, or its pharmacokinetics. Some of the most important adjuster bolts to tune them are the particles' iron core and hydrodynamic diameter, their anisotropy, the composition of the particles' suspension, and their coating. As a three-dimensional, real-time imaging modality that is free of ionizing radiation, MPI appears ideally suited for applications such as vascular imaging and interventions as well as cellular and targeted imaging. A number of different theories and technical approaches on the way to the actual implementation of the basic concept of MPI have been seen in the last few years. Research groups around the world are working on different scanner geometries, from closed bore systems to single-sided scanners, and use reconstruction methods that are either based on actual calibration measurements or on theoretical models. This review aims at giving an overview of current developments and future directions in MPI about a decade after its first appearance.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/b882f3f74218/ijn-10-3097Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/a8987c9c6053/ijn-10-3097Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/3c0540bebe76/ijn-10-3097Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/fac6c2c06cd8/ijn-10-3097Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/2f40e867bfd1/ijn-10-3097Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/98c2d925aeee/ijn-10-3097Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/a76f72c52a4d/ijn-10-3097Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/125c312a616f/ijn-10-3097Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/d59158049d29/ijn-10-3097Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/b882f3f74218/ijn-10-3097Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/a8987c9c6053/ijn-10-3097Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/3c0540bebe76/ijn-10-3097Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/fac6c2c06cd8/ijn-10-3097Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/2f40e867bfd1/ijn-10-3097Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/98c2d925aeee/ijn-10-3097Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/a76f72c52a4d/ijn-10-3097Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/125c312a616f/ijn-10-3097Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/d59158049d29/ijn-10-3097Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586f/4411024/b882f3f74218/ijn-10-3097Fig9.jpg

相似文献

[1]
Magnetic particle imaging: current developments and future directions.

Int J Nanomedicine. 2015-4-22

[2]
Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells.

Int J Nanomedicine. 2014-10-29

[3]
Magnetic Particle Imaging: Current Applications in Biomedical Research.

J Magn Reson Imaging. 2020-6

[4]
Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging.

Nanomaterials (Basel). 2018-3-21

[5]
Multifrequency magnetic particle imaging enabled by a combined passive and active drive field feed-through compensation approach.

Med Phys. 2019-7-16

[6]
Tuning surface coatings of optimized magnetite nanoparticle tracers for Magnetic Particle Imaging.

IEEE Trans Magn. 2015-2

[7]
High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI).

Nanoscale. 2016-6-16

[8]
Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging.

IEEE Trans Med Imaging. 2014-10-24

[9]
Tomographic Field Free Line Magnetic Particle Imaging With an Open-Sided Scanner Configuration.

IEEE Trans Med Imaging. 2020-12

[10]
Intracellular dynamics of superparamagnetic iron oxide nanoparticles for magnetic particle imaging.

Nanoscale. 2019-4-23

引用本文的文献

[1]
Principles and applications of magnetic nanomaterials in magnetically guided bioimaging.

Mater Today Phys. 2023-3

[2]
Effects of excitation field amplitude on magnetic particle imaging performance: a modeling study.

J Phys D Appl Phys. 2025-7-28

[3]
Advances in magnetic particle imaging and perspectives on liver imaging.

ILIVER. 2022-11-8

[4]
Magnetic particle imaging resolution needed for magnetic hyperthermia treatment planning: a sensitivity analysis.

Front Therm Eng. 2025

[5]
A Physics-Based Computational Forward Model for Efficient Image Reconstruction in Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2025-5

[6]
A CLDN18.2-Targeted Nanoplatform Manipulates Magnetic Hyperthermia Spatiotemporally for Synergistic Immunotherapy in Gastric Cancer.

Adv Sci (Weinh). 2025-4

[7]
Signal Differentiation of Moving Magnetic Nanoparticles for Enhanced Biodetection and Diagnostics.

Biosensors (Basel). 2025-2-17

[8]
Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization.

Adv Sci (Weinh). 2025-4

[9]
A comprehensive analysis of the impacts of Image Resolution and Scanning Times on the quality of MPI-reconstructed images.

Sci Rep. 2025-2-14

[10]
Therapeutic Innovations in Nanomedicine: Exploring the Potential of Magnetotactic Bacteria and Bacterial Magnetosomes.

Int J Nanomedicine. 2025-1-11

本文引用的文献

[1]
Highly Stable Amine Functionalized Iron Oxide Nanoparticles Designed for Magnetic Particle Imaging (MPI).

IEEE Trans Magn. 2013-7

[2]
MRI Meets MPI: a bimodal MPI-MRI tomograph.

IEEE Trans Med Imaging. 2014-10

[3]
Magnetic particle imaging: kinetics of the intravascular signal in vivo.

Int J Nanomedicine. 2014-9-3

[4]
Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging.

J Appl Phys. 2014-5-7

[5]
Safety measurements for heating of instruments for cardiovascular interventions in magnetic particle imaging (MPI) - first experiences.

J Healthc Eng. 2014

[6]
Magnetic nanoparticle sensing: decoupling the magnetization from the excitation field.

J Phys D Appl Phys. 2014

[7]
Magnetic particle imaging with a planar frequency mixing magnetic detection scanner.

Rev Sci Instrum. 2014-1

[8]
Dependence of Brownian and Néel relaxation times on magnetic field strength.

Med Phys. 2014-1

[9]
Safety considerations for magnetic fields of 10 mT to 100 mT amplitude in the frequency range of 10 kHz to 100 kHz for magnetic particle imaging.

Biomed Tech (Berl). 2013-12

[10]
Traveling wave magnetic particle imaging.

IEEE Trans Med Imaging. 2013-10-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索