Suppr超能文献

蒙特卡罗方法在放射生物学实验中光子相互作用的研究。

Monte Carlo studies on photon interactions in radiobiological experiments.

机构信息

Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.

Faculty of Science, University of Kragujevac, Kragujevac, Serbia.

出版信息

PLoS One. 2018 Mar 21;13(3):e0193575. doi: 10.1371/journal.pone.0193575. eCollection 2018.

Abstract

X-ray and γ-ray photons have been widely used for studying radiobiological effects of ionizing radiations. Photons are indirectly ionizing radiations so they need to set in motion electrons (which are a directly ionizing radiation) to perform the ionizations. When the photon dose decreases to below a certain limit, the number of electrons set in motion will become so small that not all cells in an "exposed" cell population can get at least one electron hit. When some cells in a cell population are not hit by a directly ionizing radiation (in other words not irradiated), there will be rescue effect between the irradiated cells and non-irradiated cells, and the resultant radiobiological effect observed for the "exposed" cell population will be different. In the present paper, the mechanisms underlying photon interactions in radiobiological experiments were studied using our developed NRUphoton computer code, which was benchmarked against the MCNP5 code by comparing the photon dose delivered to the cell layer underneath the water medium. The following conclusions were reached: (1) The interaction fractions decreased in the following order: 16O > 12C > 14N > 1H. Bulges in the interaction fractions (versus water medium thickness) were observed, which reflected changes in the energies of the propagating photons due to traversals of different amount of water medium as well as changes in the energy-dependent photon interaction cross-sections. (2) Photoelectric interaction and incoherent scattering dominated for lower-energy (10 keV) and high-energy (100 keV and 1 MeV) incident photons. (3) The fractions of electron ejection from different nuclei were mainly governed by the photoelectric effect cross-sections, and the fractions from the 1s subshell were the largest. (4) The penetration fractions in general decreased with increasing medium thickness, and increased with increasing incident photon energy, the latter being explained by the corresponding reduction in interaction cross-sections. (5) The areas under the angular distribution curves of photons exiting the medium layer and subsequently undergoing interactions within the cell layer became smaller for larger incident photon energies. (6) The number of cells suffering at least one electron hit increased with the administered dose. For larger incident photon energies, the numbers of cells suffering at least one electron hit became smaller, which was attributed to the reduction in the photon interaction cross-section. These results highlighted the importance of the administered dose in radiobiological experiments. In particular, the threshold administered doses at which all cells in the exposed cell array suffered at least one electron hit might provide hints on explaining the intriguing observation that radiation-induced cancers can be statistically detected only above the threshold value of ~100 mSv, and thus on reconciling controversies over the linear no-threshold model.

摘要

X 射线和 γ 射线光子被广泛用于研究电离辐射的放射生物学效应。光子是间接电离辐射,因此它们需要使电子运动(电子是直接电离辐射)来进行电离。当光子剂量降低到一定的限度以下时,运动的电子数量会变得非常小,以至于暴露细胞群体中的所有细胞都不能至少受到一个电子的撞击。当细胞群体中的一些细胞没有受到直接电离辐射的照射(换句话说,没有被照射)时,照射细胞和未照射细胞之间会产生救援效应,因此观察到的暴露细胞群体的放射生物学效应会有所不同。在本文中,我们使用开发的 NRUphoton 计算机程序研究了光子在放射生物学实验中的相互作用机制,该程序通过比较水介质下的细胞层的光子剂量,与 MCNP5 代码进行了基准测试。得出以下结论:(1)相互作用分数按以下顺序降低:16O > 12C > 14N > 1H。在相互作用分数(相对于水介质厚度)中观察到凸起,这反映了由于穿过不同量的水介质以及由于能量相关的光子相互作用截面的变化而导致的传播光子能量的变化。(2)光电相互作用和非相干散射在低能(10 keV)和高能(100 keV 和 1 MeV)入射光子中占主导地位。(3)不同原子核的电子逐出分数主要由光电效应截面决定,1s 子壳层的逐出分数最大。(4)一般来说,穿透分数随着介质厚度的增加而减小,随着入射光子能量的增加而增加,后者可以解释为相互作用截面的相应减小。(5)从中层离开并随后在细胞层内相互作用的光子的角分布曲线下的面积对于较大的入射光子能量会变小。(6)至少受到一个电子撞击的细胞数量随着给予的剂量增加而增加。对于较大的入射光子能量,至少受到一个电子撞击的细胞数量会减少,这归因于光子相互作用截面的减少。这些结果强调了放射生物学实验中给予剂量的重要性。特别是,在暴露细胞阵列中的所有细胞都至少受到一个电子撞击的阈值剂量可能会提供有关解释令人费解的观察结果的提示,即只有在约 100 mSv 的阈值以上才能统计检测到辐射诱导的癌症,并且因此可以调和线性无阈值模型的争议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a63/5862409/f400768447f0/pone.0193575.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验