Departments of Urology, University of Kentucky College of Medicine, Lexington, Kentucky, KY 40536, USA.
Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, KY 40536, USA.
Int J Mol Sci. 2018 Mar 19;19(3):904. doi: 10.3390/ijms19030904.
The major challenge in the treatment of patients with advanced lethal prostate cancer is therapeutic resistance to androgen-deprivation therapy (ADT) and chemotherapy. Overriding this resistance requires understanding of the driving mechanisms of the tumor microenvironment, not just the androgen receptor (AR)-signaling cascade, that facilitate therapeutic resistance in order to identify new drug targets. The tumor microenvironment enables key signaling pathways promoting cancer cell survival and invasion via resistance to anoikis. In particular, the process of epithelial-mesenchymal-transition (EMT), directed by transforming growth factor-β (TGF-β), confers stem cell properties and acquisition of a migratory and invasive phenotype via resistance to anoikis. Our lead agent DZ-50 may have a potentially high efficacy in advanced metastatic castration resistant prostate cancer (mCRPC) by eliciting an anoikis-driven therapeutic response. The plasticity of differentiated prostate tumor gland epithelium allows cells to de-differentiate into mesenchymal cells via EMT and re-differentiate via reversal to mesenchymal epithelial transition (MET) during tumor progression. A characteristic feature of EMT landscape is loss of E-cadherin, causing adherens junction breakdown, which circumvents anoikis, promoting metastasis and chemoresistance. The targetable interactions between androgens/AR and TGF-β signaling are being pursued towards optimized therapeutic regimens for the treatment of mCRPC. In this review, we discuss the recent evidence on targeting the EMT-MET dynamic interconversions to overcome therapeutic resistance in patients with recurrent therapeutically resistant prostate cancer. Exploitation of the phenotypic landscape and metabolic changes that characterize the prostate tumor microenvironment in advanced prostate cancer and consequential impact in conferring treatment resistance are also considered in the context of biomarker discovery.
治疗晚期致命前列腺癌患者的主要挑战是对抗雄激素剥夺疗法 (ADT) 和化疗的治疗耐药性。克服这种耐药性需要了解肿瘤微环境的驱动机制,而不仅仅是雄激素受体 (AR) 信号级联,以促进治疗耐药性,从而确定新的药物靶点。肿瘤微环境通过抵抗失巢凋亡使关键信号通路促进癌细胞存活和侵袭,从而使癌细胞能够存活和侵袭。特别是,转化生长因子-β (TGF-β) 指导的上皮-间充质转化 (EMT) 通过抵抗失巢凋亡赋予干细胞特性,并通过获得迁移和侵袭表型。我们的先导药物 DZ-50 通过引发失巢凋亡驱动的治疗反应,可能在晚期转移性去势抵抗性前列腺癌 (mCRPC) 中具有很高的疗效。分化的前列腺肿瘤腺上皮的可塑性允许细胞通过 EMT 去分化为间充质细胞,并在肿瘤进展过程中通过逆转至间充质上皮转化 (MET) 重新分化。EMT 景观的一个特征是 E-钙粘蛋白的丢失,导致黏着连接破裂,从而绕过失巢凋亡,促进转移和化疗耐药性。正在针对雄激素/AR 和 TGF-β 信号之间的靶向相互作用,以寻求优化 mCRPC 治疗方案。在这篇综述中,我们讨论了靶向 EMT-MET 动态转换以克服复发性治疗耐药性前列腺癌患者治疗耐药性的最新证据。还考虑了在先进的前列腺癌中,表型景观和代谢变化特征描述了前列腺肿瘤微环境,并在赋予治疗耐药性方面产生了相应的影响,这也是生物标志物发现的背景。