Suppr超能文献

采用多变量方法研究多种暴露因素的综合生物学效应。

A multivariate approach to investigate the combined biological effects of multiple exposures.

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.

Molecular and Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM), Turin, Italy.

出版信息

J Epidemiol Community Health. 2018 Jul;72(7):564-571. doi: 10.1136/jech-2017-210061. Epub 2018 Mar 21.

Abstract

Epidemiological studies provide evidence that environmental exposures may affect health through complex mixtures. Formal investigation of the effect of exposure mixtures is usually achieved by modelling interactions, which relies on strong assumptions relating to the identity and the number of the exposures involved in such interactions, and on the order and parametric form of these interactions. These hypotheses become difficult to formulate and justify in an exposome context, where influential exposures are numerous and heterogeneous. To capture both the complexity of the exposome and its possibly pleiotropic effects, models handling multivariate predictors and responses, such as partial least squares (PLS) algorithms, can prove useful. As an illustrative example, we applied PLS models to data from a study investigating the inflammatory response (blood concentration of 13 immune markers) to the exposure to four disinfection by-products (one brominated and three chlorinated compounds), while swimming in a pool. To accommodate the multiple observations per participant (n=60; before and after the swim), we adopted a multilevel extension of PLS algorithms, including sparse PLS models shrinking loadings coefficients of unimportant predictors (exposures) and/or responses (protein levels). Despite the strong correlation among co-occurring exposures, our approach identified a subset of exposures (n=3/4) affecting the exhaled levels of 8 (out of 13) immune markers. PLS algorithms can easily scale to high-dimensional exposures and responses, and prove useful for exposome research to identify sparse sets of exposures jointly affecting a set of (selected) biological markers. Our descriptive work may guide these extensions for higher dimensional data.

摘要

流行病学研究提供的证据表明,环境暴露可能通过复杂的混合物影响健康。通过建模相互作用来正式研究暴露混合物的影响,这通常依赖于与相互作用中涉及的暴露的数量和身份相关的强烈假设,以及这些相互作用的顺序和参数形式。在暴露组学中,这些假设变得难以形成和证明,因为有影响力的暴露数量众多且异质。为了捕捉暴露组学的复杂性及其可能的多效性效应,可以使用处理多元预测因子和响应的模型,例如偏最小二乘(PLS)算法。作为一个说明性示例,我们将 PLS 模型应用于一项研究的数据,该研究调查了在游泳池中游泳时,对四种消毒副产物(一种溴化和三种氯化化合物)的暴露对炎症反应(13 种免疫标志物的血液浓度)的影响。为了适应每个参与者的多个观察值(n=60;游泳前后),我们采用了 PLS 算法的多层次扩展,包括稀疏 PLS 模型,缩小不重要的预测因子(暴露)和/或响应(蛋白水平)的加载系数。尽管共同出现的暴露之间存在强烈的相关性,但我们的方法确定了一组暴露(n=3/4),这些暴露会影响 13 种免疫标志物中的 8 种(8 种)呼出水平。PLS 算法可以轻松扩展到高维暴露和响应,并可用于暴露组学研究,以识别共同影响一组(选定)生物标志物的稀疏暴露集。我们的描述性工作可能会指导这些扩展以适应更高维的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6b/6031275/fa01dc4657f6/jech-2017-210061f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验