Suppr超能文献

带惩罚权重和两个指标的加权分位数和回归。

A weighted quantile sum regression with penalized weights and two indices.

机构信息

Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy.

Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.

出版信息

Front Public Health. 2023 Jul 18;11:1151821. doi: 10.3389/fpubh.2023.1151821. eCollection 2023.

Abstract

BACKGROUND

New statistical methodologies were developed in the last decade to face the challenges of estimating the effects of exposure to multiple chemicals. Weighted Quantile Sum (WQS) regression is a recent statistical method that allows estimating a mixture effect associated with a specific health effect and identifying the components that characterize the mixture effect.

OBJECTIVES

In this study, we propose an extension of WQS regression that estimates two mixture effects of chemicals on a health outcome in the same model through the inclusion of two indices, one in the positive direction and one in the negative direction, with the introduction of a penalization term.

METHODS

To evaluate the performance of this new model we performed both a simulation study and a real case study where we assessed the effects of nutrients on obesity among adults using the National Health and Nutrition Examination Survey (NHANES) data.

RESULTS

The method showed good performance in estimating both the regression parameter and the weights associated with the single elements when the penalized term was set equal to the magnitude of the Akaike information criterion of the unpenalized WQS regression. The two indices further helped to give a better estimate of the parameters [Positive direction Median Error (PME): 0.022; Negative direction Median Error (NME): -0.044] compared to the standard WQS without the penalization term (PME: -0.227; NME: 0.215). In the case study, WQS with two indices was able to find a significant effect of nutrients on obesity in both directions identifying sodium and magnesium as the main actors in the positive and negative association, respectively.

DISCUSSION

Through this work, we introduced an extension of WQS regression that improved the accuracy of the parameter estimates when considering a mixture of elements that can have both a protective and a harmful effect on the outcome; and the advantage of adding a penalization term when estimating the weights.

摘要

背景

在过去的十年中,开发了新的统计方法来应对估计暴露于多种化学物质的影响的挑战。加权分位数和(WQS)回归是一种新的统计方法,它可以估计与特定健康效应相关的混合物效应,并确定构成混合物效应的成分。

目的

本研究提出了一种 WQS 回归的扩展,通过纳入两个指数,一个在正方向,一个在负方向,并引入惩罚项,在同一个模型中估计两种化学物质对健康结果的混合物效应。

方法

为了评估这个新模型的性能,我们进行了模拟研究和实际案例研究。在实际案例研究中,我们使用国家健康和营养检查调查(NHANES)数据评估了营养素对成年人肥胖的影响。

结果

当惩罚项等于无惩罚 WQS 回归的 Akaike 信息量准则的大小时,该方法在估计回归参数和与单个元素相关的权重方面表现良好。两个指数进一步有助于更好地估计参数[正方向中位数误差(PME):0.022;负方向中位数误差(NME):-0.044],与没有惩罚项的标准 WQS 相比(PME:-0.227;NME:0.215)。在案例研究中,具有两个指数的 WQS 能够在两个方向上发现营养素对肥胖的显著影响,分别确定钠和镁是正相关和负相关的主要因素。

讨论

通过这项工作,我们引入了 WQS 回归的扩展,当考虑对结果既有保护作用又有有害作用的元素混合物时,提高了参数估计的准确性;并且在估计权重时添加惩罚项的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc17/10392701/f0c5187507b9/fpubh-11-1151821-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验