Suppr超能文献

用于处理多个高度相关暴露因素和截尾生存结局的贝叶斯轮廓回归。在电离辐射流行病学中的首次应用。

Bayesian Profile Regression to Deal With Multiple Highly Correlated Exposures and a Censored Survival Outcome. First Application in Ionizing Radiation Epidemiology.

作者信息

Belloni Marion, Laurent Olivier, Guihenneuc Chantal, Ancelet Sophie

机构信息

PSE-SANTE/SESANE/LEPID, Institut de Radioprotection et de Sûreté Nucléaire, Paris, France.

Université de Paris, Unité de Recherche "Biostatistique, Traitement et Modélisation des données biologiques" BioSTM - UR 7537, Paris, France.

出版信息

Front Public Health. 2020 Oct 27;8:557006. doi: 10.3389/fpubh.2020.557006. eCollection 2020.

Abstract

As multifactorial and chronic diseases, cancers are among these pathologies for which the exposome concept is essential to gain more insight into the associated etiology and, ultimately, lead to better primary prevention strategies for public health. Indeed, cancers result from the combined influence of many genetic, environmental and behavioral stressors that may occur simultaneously and interact. It is thus important to properly account for multifactorial exposure patterns when estimating specific cancer risks at individual or population level. Nevertheless, the risk factors, especially environmental, are still too often considered in isolation in epidemiological studies. Moreover, major statistical difficulties occur when exposures to several factors are highly correlated due, for instance, to common sources shared by several pollutants. Suitable statistical methods must then be used to deal with these multicollinearity issues. In this work, we focused on the specific problem of estimating a disease risk from highly correlated environmental exposure covariates and a censored survival outcome. We extended Bayesian profile regression mixture (PRM) models to this context by assuming an instantaneous excess hazard ratio disease sub-model. The proposed hierarchical model incorporates an underlying truncated Dirichlet process mixture as an attribution sub-model. A specific adaptive Metropolis-Within-Gibbs algorithm-including label switching moves-was implemented to infer the model. This allows simultaneously clustering individuals with similar risks and similar exposure characteristics and estimating the associated risk for each group. Our Bayesian PRM model was applied to the estimation of the risk of death by lung cancer in a cohort of French uranium miners who were chronically and occupationally exposed to multiple and correlated sources of ionizing radiation. Several groups of uranium miners with high risk and low risk of death by lung cancer were identified and characterized by specific exposure profiles. Interestingly, our case study illustrates a limit of MCMC algorithms to fit full Bayesian PRM models even if the updating schemes for the cluster labels incorporate label-switching moves. Then, although this paper shows that Bayesian PRM models are promising tools for exposome research, it also opens new avenues for methodological research in this class of probabilistic models.

摘要

作为多因素和慢性疾病,癌症属于这样一类病理情况,对于它们而言,暴露组概念对于更深入了解相关病因并最终制定更好的公共卫生一级预防策略至关重要。的确,癌症是由许多可能同时发生并相互作用的遗传、环境和行为应激源的综合影响所致。因此,在个体或人群水平估计特定癌症风险时,正确考虑多因素暴露模式很重要。然而,在流行病学研究中,风险因素,尤其是环境因素,仍然常常被孤立地考虑。此外,当暴露于多个因素高度相关时,例如由于几种污染物共享共同来源,就会出现重大统计困难。必须使用合适的统计方法来处理这些多重共线性问题。在这项工作中,我们专注于从高度相关的环境暴露协变量和删失生存结局估计疾病风险的具体问题。我们通过假设一个瞬时超额风险比疾病子模型,将贝叶斯轮廓回归混合(PRM)模型扩展到这种情况。所提出的层次模型纳入一个潜在的截断狄利克雷过程混合作为归因子模型。实施了一种特定的自适应吉布斯内梅特罗波利斯算法(包括标签切换移动)来推断模型。这允许同时对具有相似风险和相似暴露特征的个体进行聚类,并估计每组的相关风险。我们的贝叶斯PRM模型应用于估计一组长期职业性暴露于多种相关电离辐射源的法国铀矿工人的肺癌死亡风险。识别出了几组肺癌死亡风险高和低的铀矿工人,并通过特定的暴露概况对其进行了特征描述。有趣的是,我们的案例研究说明了即使聚类标签的更新方案纳入了标签切换移动,MCMC算法拟合完整贝叶斯PRM模型的一个局限性。那么,尽管本文表明贝叶斯PRM模型是暴露组研究的有前途的工具,但它也为这类概率模型的方法学研究开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验