Czech Laura, Hermann Lucas, Stöveken Nadine, Richter Alexandra A, Höppner Astrid, Smits Sander H J, Heider Johann, Bremer Erhard
Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
Genes (Basel). 2018 Mar 22;9(4):177. doi: 10.3390/genes9040177.
Fluctuations in environmental osmolarity are ubiquitous stress factors in many natural habitats of microorganisms, as they inevitably trigger osmotically instigated fluxes of water across the semi-permeable cytoplasmic membrane. Under hyperosmotic conditions, many microorganisms fend off the detrimental effects of water efflux and the ensuing dehydration of the cytoplasm and drop in turgor through the accumulation of a restricted class of organic osmolytes, the compatible solutes. Ectoine and its derivative 5-hydroxyectoine are prominent members of these compounds and are synthesized widely by members of the Bacteria and a few Archaea and Eukarya in response to high salinity/osmolarity and/or growth temperature extremes. Ectoines have excellent function-preserving properties, attributes that have led to their description as chemical chaperones and fostered the development of an industrial-scale biotechnological production process for their exploitation in biotechnology, skin care, and medicine. We review, here, the current knowledge on the biochemistry of the ectoine/hydroxyectoine biosynthetic enzymes and the available crystal structures of some of them, explore the genetics of the underlying biosynthetic genes and their transcriptional regulation, and present an extensive phylogenomic analysis of the ectoine/hydroxyectoine biosynthetic genes. In addition, we address the biochemistry, phylogenomics, and genetic regulation for the alternative use of ectoines as nutrients.
在微生物的许多自然栖息地中,环境渗透压的波动是普遍存在的应激因素,因为它们不可避免地会引发由渗透压驱动的水穿过半透性细胞质膜的流动。在高渗条件下,许多微生物通过积累一类有限的有机渗透物(即相容性溶质)来抵御水外流以及随之而来的细胞质脱水和膨压下降的有害影响。四氢嘧啶及其衍生物5-羟基四氢嘧啶是这些化合物中的突出成员,细菌、少数古菌和真核生物中的成员在高盐度/渗透压和/或极端生长温度条件下广泛合成它们。四氢嘧啶具有出色的功能保护特性,这些特性使其被描述为化学伴侣,并促进了工业规模生物技术生产工艺的开发,以用于生物技术、皮肤护理和医学领域。在此,我们综述了关于四氢嘧啶/羟基四氢嘧啶生物合成酶的生物化学以及其中一些酶的现有晶体结构的当前知识,探讨了潜在生物合成基因的遗传学及其转录调控,并对四氢嘧啶/羟基四氢嘧啶生物合成基因进行了广泛的系统基因组分析。此外,我们还讨论了四氢嘧啶作为营养物质的替代用途的生物化学、系统基因组学和遗传调控。