Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Japan.
Adv Drug Deliv Rev. 2018 Mar 15;128:84-100. doi: 10.1016/j.addr.2018.03.008. Epub 2018 Mar 19.
Lipid-based nanobiomaterials as liposomes and lipid nanoparticles (LNPs) are the most widely used nanocarriers for drug delivery systems (DDSs). Extracellular vesicles (EVs) and exosomes are also expected to be applied as DDS nanocarriers. The performance of nanomedicines relies on their components such as lipids, targeting ligands, encapsulated DNA, encapsulated RNA, and drugs. Recently, the importance of the nanocarrier sizes smaller than 100nm is attracting attention as a means to improve nanomedicine performance. Microfluidics and lab-on-a chip technologies make it possible to produce size-controlled LNPs by a simple continuous flow process and to separate EVs from blood samples by using a surface marker, ligand, or electric charge or by making a mass or particle size discrimination. Here, we overview recent advances in microfluidic devices and techniques for liposomes, LNPs, and EVs and their applications for DDSs.
作为药物递送系统 (DDS) 的最广泛应用的纳米载体,基于脂质的纳米生物材料(如脂质体和脂质纳米颗粒 (LNP))。细胞外囊泡 (EV) 和外泌体也有望被用作 DDS 纳米载体。纳米药物的性能取决于其组成部分,如脂质、靶向配体、包封的 DNA、包封的 RNA 和药物。最近,小于 100nm 的纳米载体尺寸的重要性作为改善纳米药物性能的手段引起了关注。微流控和芯片实验室技术使得通过简单的连续流过程生产尺寸可控的 LNP 成为可能,并通过使用表面标记物、配体、电荷或通过质量或颗粒尺寸区分来从血液样本中分离 EV。在这里,我们综述了用于脂质体、LNP 和 EV 的微流控装置和技术的最新进展及其在 DDS 中的应用。