Suppr超能文献

用于研究女性盆底功能障碍的软结缔组织建模

Modelling of Soft Connective Tissues to Investigate Female Pelvic Floor Dysfunctions.

作者信息

Bhattarai Aroj, Staat Manfred

机构信息

Biomechanics Laboratory, Institute of Bioengineering, Aachen University of Applied Sciences, 52428 Jülich, Germany.

出版信息

Comput Math Methods Med. 2018 Jan 15;2018:9518076. doi: 10.1155/2018/9518076. eCollection 2018.

Abstract

After menopause, decreased levels of estrogen and progesterone remodel the collagen of the soft tissues thereby reducing their stiffness. Stress urinary incontinence is associated with involuntary urine leakage due to pathological movement of the pelvic organs resulting from lax suspension system, fasciae, and ligaments. This study compares the changes in the orientation and position of the female pelvic organs due to weakened fasciae, ligaments, and their combined laxity. A mixture theory weighted by respective volume fraction of elastin-collagen fibre compound (5%), adipose tissue (85%), and smooth muscle (5%) is adopted to characterize the mechanical behaviour of the fascia. The load carrying response (other than the functional response to the pelvic organs) of each fascia component, pelvic organs, muscles, and ligaments are assumed to be isotropic, hyperelastic, and incompressible. Finite element simulations are conducted during Valsalva manoeuvre with weakened tissues modelled by reduced tissue stiffness. A significant dislocation of the urethrovesical junction is observed due to weakness of the fascia (13.89 mm) compared to the ligaments (5.47 mm). The dynamics of the pelvic floor observed in this study during Valsalva manoeuvre is associated with urethral-bladder hypermobility, greater levator plate angulation, and positive Q-tip test which are observed in incontinent females.

摘要

绝经后,雌激素和孕激素水平下降会重塑软组织中的胶原蛋白,从而降低其硬度。压力性尿失禁与由于悬吊系统、筋膜和韧带松弛导致盆腔器官病理性移位引起的不自主漏尿有关。本研究比较了由于筋膜、韧带减弱及其联合松弛导致的女性盆腔器官方向和位置的变化。采用一种由弹性蛋白-胶原纤维复合物(5%)、脂肪组织(85%)和平滑肌(5%)各自体积分数加权的混合理论来表征筋膜的力学行为。假定每个筋膜成分、盆腔器官、肌肉和韧带的承载响应(除了对盆腔器官的功能响应外)是各向同性、超弹性且不可压缩的。在瓦尔萨尔瓦动作期间进行有限元模拟,用降低的组织刚度对减弱的组织进行建模。与韧带(5.47毫米)相比,观察到由于筋膜薄弱(13.89毫米)导致尿道膀胱连接部明显移位。本研究在瓦尔萨尔瓦动作期间观察到的盆底动力学与尿失禁女性中观察到的尿道-膀胱活动过度、提肌板角度增大和阳性棉签试验有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b96c/5820624/f9fa13339457/CMMM2018-9518076.001.jpg

相似文献

1
Modelling of Soft Connective Tissues to Investigate Female Pelvic Floor Dysfunctions.
Comput Math Methods Med. 2018 Jan 15;2018:9518076. doi: 10.1155/2018/9518076. eCollection 2018.
2
Biomechanical properties of the pelvic floor muscles of continent and incontinent women using an inverse finite element analysis.
Comput Methods Biomech Biomed Engin. 2017 Jun;20(8):842-852. doi: 10.1080/10255842.2017.1304542. Epub 2017 Mar 17.
3
Valsalva versus straining: There is a distinct difference in resulting bladder neck and puborectalis muscle position.
Neurourol Urodyn. 2017 Sep;36(7):1860-1866. doi: 10.1002/nau.23197. Epub 2017 Jan 31.
4
Biomechanical study on the bladder neck and urethral positions: simulation of impairment of the pelvic ligaments.
J Biomech. 2015 Jan 21;48(2):217-23. doi: 10.1016/j.jbiomech.2014.11.045. Epub 2014 Dec 9.
5
MRI urethrovesical junction mobility is associated with global pelvic floor laxity in female stress incontinence.
Acta Obstet Gynecol Scand. 2007 Oct;86(10):1243-50. doi: 10.1080/00016340701550990.
6
Levator co-activation is a significant confounder of pelvic organ descent on Valsalva maneuver.
Ultrasound Obstet Gynecol. 2007 Sep;30(3):346-50. doi: 10.1002/uog.4082.
7
Strain Elastography as a New Method for Assessing Pelvic Floor Biomechanics.
Ultrasound Med Biol. 2017 Apr;43(4):868-872. doi: 10.1016/j.ultrasmedbio.2016.12.004. Epub 2017 Jan 17.
8
[Functional aspects of pelvic floor surgery].
Aktuelle Urol. 2009 Nov;40(6):345-50. doi: 10.1055/s-0029-1224679. Epub 2009 Nov 6.
9
Finite element studies of the deformation of the pelvic floor.
Ann N Y Acad Sci. 2007 Apr;1101:316-34. doi: 10.1196/annals.1389.019. Epub 2007 Mar 15.
10
Assessment of pelvic floor movement using transabdominal and transperineal ultrasound.
Int Urogynecol J Pelvic Floor Dysfunct. 2005 Jul-Aug;16(4):285-92. doi: 10.1007/s00192-005-1308-3. Epub 2005 Mar 22.

引用本文的文献

1
Finite element modeling in obstetrics and gynecology: advances, applications, and challenges.
Front Med (Lausanne). 2025 Aug 29;12:1606989. doi: 10.3389/fmed.2025.1606989. eCollection 2025.
5
Layer-Specific Damage Modeling of Porcine Large Intestine under Biaxial Tension.
Bioengineering (Basel). 2022 Oct 6;9(10):528. doi: 10.3390/bioengineering9100528.
7
Impact of treatment modality on pelvic floor dysfunction among uterine cancer survivors.
Int J Gynecol Cancer. 2022 Oct 3;32(10):1266-1275. doi: 10.1136/ijgc-2022-003417.
8
The evolution of pelvic canal shape and rotational birth in humans.
BMC Biol. 2021 Oct 11;19(1):224. doi: 10.1186/s12915-021-01150-w.
9
A computational analysis of the effect of supporting organs on predicted vesical pressure in stress urinary incontinence.
Med Biol Eng Comput. 2020 May;58(5):1079-1089. doi: 10.1007/s11517-020-02148-2. Epub 2020 Mar 10.

本文引用的文献

1
Modelling of compressible and orthotropic surgical mesh implants based on optical deformation measurement.
J Mech Behav Biomed Mater. 2017 Oct;74:400-410. doi: 10.1016/j.jmbbm.2017.06.012. Epub 2017 Jun 12.
2
Pathophysiological aspects of cystocele with a 3D finite elements model.
Arch Gynecol Obstet. 2016 Nov;294(5):983-989. doi: 10.1007/s00404-016-4150-6. Epub 2016 Jul 11.
3
Micro-structural and Biaxial Creep Properties of the Swine Uterosacral-Cardinal Ligament Complex.
Ann Biomed Eng. 2016 Nov;44(11):3225-3237. doi: 10.1007/s10439-016-1661-z. Epub 2016 Jun 2.
4
Creating a model of diseased artery damage and failure from healthy porcine aorta.
J Mech Behav Biomed Mater. 2016 Jul;60:378-393. doi: 10.1016/j.jmbbm.2016.02.018. Epub 2016 Feb 18.
5
A nonlinear-elastic constitutive model for soft connective tissue based on a histologic description: Application to female pelvic soft tissue.
J Mech Behav Biomed Mater. 2016 May;58:65-74. doi: 10.1016/j.jmbbm.2015.09.023. Epub 2015 Sep 30.
6
Assessment of urethral support using MRI-derived computational modeling of the female pelvis.
Int Urogynecol J. 2016 Feb;27(2):205-12. doi: 10.1007/s00192-015-2804-8. Epub 2015 Jul 30.
7
A polynomial hyperelastic model for the mixture of fat and glandular tissue in female breast.
Int J Numer Method Biomed Eng. 2015 Sep;31(9):e02723. doi: 10.1002/cnm.2723. Epub 2015 May 24.
8
A multi-compartment 3-D finite element model of rectocele and its interaction with cystocele.
J Biomech. 2015 Jun 25;48(9):1580-6. doi: 10.1016/j.jbiomech.2015.02.041. Epub 2015 Feb 26.
9
Female patient-specific finite element modeling of pelvic organ prolapse (POP).
J Biomech. 2015 Jan 21;48(2):238-45. doi: 10.1016/j.jbiomech.2014.11.039. Epub 2014 Dec 4.
10
Biomechanical study on the bladder neck and urethral positions: simulation of impairment of the pelvic ligaments.
J Biomech. 2015 Jan 21;48(2):217-23. doi: 10.1016/j.jbiomech.2014.11.045. Epub 2014 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验