Suppr超能文献

利用高通量测序评估被动诱捕器对空气真菌群落的研究。

Assessment of Passive Traps Combined with High-Throughput Sequencing To Study Airborne Fungal Communities.

机构信息

ANSES, Laboratoire de la Santé des Végétaux-LSV, Unité de Mycologie. Domaine de Pixérécourt, Malzéville, France

ANSES, Laboratoire de la Santé des Végétaux-LSV, Unité de Mycologie. Domaine de Pixérécourt, Malzéville, France.

出版信息

Appl Environ Microbiol. 2018 May 17;84(11). doi: 10.1128/AEM.02637-17. Print 2018 Jun 1.

Abstract

Techniques based on high-throughput sequencing (HTS) of environmental DNA have provided a new way of studying fungal diversity. However, these techniques suffer from a number of methodological biases which may appear at any of the steps involved in a metabarcoding study. Air is one of the most important environments where fungi can be found, because it is the primary medium of dispersal for many species. Looking ahead to future developments, it was decided to test 20 protocols, including different passive spore traps, spore recovery procedures, DNA extraction kits, and barcode loci. HTS was performed with the Illumina MiSeq platform targeting two subloci of the fungal internal transcribed spacer. Multivariate analysis and generalized linear models showed that the type of passive spore trap, the spore recovery procedure, and the barcode all impact the description of fungal communities in terms of richness and diversity when assessed by HTS metabarcoding. In contrast, DNA extraction kits did not significantly impact these results. Although passive traps may be used to describe airborne fungal communities, a study using specific real-time PCR and a mock community showed that these kinds of traps are affected by environmental conditions that may induce losses of biological material, impacting diversity and community composition results. The advent of high-throughput sequencing (HTS) methods, such as those offered by next-generation sequencing (NGS) techniques, has opened a new era in the study of fungal diversity in different environmental substrates. In this study, we show that an assessment of the diversity of airborne fungal communities can reliably be achieved by the use of simple and robust passive spore traps. However, a comparison of sample processing protocols showed that several methodological biases may impact the results of fungal diversity when assessed by metabarcoding. Our data suggest that identifying these biases is of paramount importance to enable a correct identification and relative quantification of community members.

摘要

基于高通量测序(HTS)的环境 DNA 技术为研究真菌多样性提供了一种新方法。然而,这些技术存在许多方法学偏差,这些偏差可能出现在宏条形码研究的任何一个步骤中。空气是真菌最容易存在的环境之一,因为它是许多物种传播的主要媒介。展望未来的发展,我们决定测试 20 种方案,包括不同的被动孢子陷阱、孢子回收程序、DNA 提取试剂盒和条形码基因座。使用靶向真菌内部转录间隔区两个亚区的 Illumina MiSeq 平台进行 HTS。多元分析和广义线性模型表明,在通过 HTS 宏条形码评估时,被动孢子陷阱的类型、孢子回收程序和条形码都会影响丰富度和多样性的描述。相比之下,DNA 提取试剂盒对这些结果没有显著影响。虽然被动陷阱可用于描述空气中的真菌群落,但一项使用特定实时 PCR 和模拟群落的研究表明,这些类型的陷阱会受到可能导致生物材料损失的环境条件的影响,从而影响多样性和群落组成的结果。高通量测序(HTS)方法的出现,如下一代测序(NGS)技术提供的方法,为研究不同环境基质中的真菌多样性开辟了一个新时代。在这项研究中,我们表明,使用简单而强大的被动孢子陷阱可以可靠地评估空气中真菌群落的多样性。然而,样本处理方案的比较表明,当通过宏条形码评估时,几种方法学偏差可能会影响真菌多样性的结果。我们的数据表明,确定这些偏差对于正确识别和相对量化群落成员至关重要。

相似文献

1
Assessment of Passive Traps Combined with High-Throughput Sequencing To Study Airborne Fungal Communities.
Appl Environ Microbiol. 2018 May 17;84(11). doi: 10.1128/AEM.02637-17. Print 2018 Jun 1.
2
Exploring the accuracy of amplicon-based internal transcribed spacer markers for a fungal community.
Mol Ecol Resour. 2020 Jan;20(1):170-184. doi: 10.1111/1755-0998.13097. Epub 2019 Nov 6.
3
Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies.
PLoS One. 2014 Jun 16;9(6):e97629. doi: 10.1371/journal.pone.0097629. eCollection 2014.
4
DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy.
PLoS One. 2018 Mar 20;13(3):e0194489. doi: 10.1371/journal.pone.0194489. eCollection 2018.
5
Accurate Estimation of Fungal Diversity and Abundance through Improved Lineage-Specific Primers Optimized for Illumina Amplicon Sequencing.
Appl Environ Microbiol. 2016 Nov 21;82(24):7217-7226. doi: 10.1128/AEM.02576-16. Print 2016 Dec 15.
7
DNA metabarcoding to assess indoor fungal communities: Electrostatic dust collectors and Illumina sequencing.
J Microbiol Methods. 2017 Aug;139:107-112. doi: 10.1016/j.mimet.2017.05.014. Epub 2017 May 27.
8
Metataxonomic comparison between internal transcribed spacer and 26S ribosomal large subunit (LSU) rDNA gene.
Int J Food Microbiol. 2019 Feb 2;290:132-140. doi: 10.1016/j.ijfoodmicro.2018.10.010. Epub 2018 Oct 10.
9
Sample Preparation for Fungal Community Analysis by High-Throughput Sequencing of Barcode Amplicons.
Methods Mol Biol. 2016;1399:61-88. doi: 10.1007/978-1-4939-3369-3_4.
10
Assessing Performance of Spore Samplers in Monitoring Aeromycobiota and Fungal Plant Pathogen Diversity in Canada.
Appl Environ Microbiol. 2018 Apr 16;84(9). doi: 10.1128/AEM.02601-17. Print 2018 May 1.

引用本文的文献

2
Environmental DNA reveals diversity and abundance of species in neighbouring heterogeneous landscapes in Worcester, UK.
Aerobiologia (Bologna). 2022;38(4):457-481. doi: 10.1007/s10453-022-09760-9. Epub 2022 Oct 23.
4
Comparison of microscopic and metagenomic approaches to identify cereal pathogens and track fungal spore release in the field.
Front Plant Sci. 2022 Oct 20;13:1039090. doi: 10.3389/fpls.2022.1039090. eCollection 2022.
5
Lignicolous freshwater fungi in Yunnan Province, China: an overview.
Mycology. 2022 Apr 3;13(2):119-132. doi: 10.1080/21501203.2022.2058638. eCollection 2022.
7
Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant Pathogens.
Microorganisms. 2021 Jan 16;9(1):188. doi: 10.3390/microorganisms9010188.
9
Fast and reliable molecular methods to detect fungal pathogens in woody plants.
Appl Microbiol Biotechnol. 2020 Mar;104(6):2453-2468. doi: 10.1007/s00253-020-10395-4. Epub 2020 Jan 31.
10
Mycobiome Diversity in Traditionally Prepared Starters for Alcoholic Beverages in India by High-Throughput Sequencing Method.
Front Microbiol. 2019 Mar 5;10:348. doi: 10.3389/fmicb.2019.00348. eCollection 2019.

本文引用的文献

1
Presence of Fusarium spp. in Air and Soil Associated with Sorghum Fields.
Plant Dis. 2011 Jun;95(6):648-656. doi: 10.1094/PDIS-09-10-0671.
2
PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives.
New Phytol. 2018 Feb;217(3):1370-1385. doi: 10.1111/nph.14776. Epub 2017 Sep 14.
3
Mushroom Emergence Detected by Combining Spore Trapping with Molecular Techniques.
Appl Environ Microbiol. 2017 Jun 16;83(13). doi: 10.1128/AEM.00600-17. Print 2017 Jul 1.
4
Accurate Estimation of Fungal Diversity and Abundance through Improved Lineage-Specific Primers Optimized for Illumina Amplicon Sequencing.
Appl Environ Microbiol. 2016 Nov 21;82(24):7217-7226. doi: 10.1128/AEM.02576-16. Print 2016 Dec 15.
5
Fungal diversity and seasonal succession in ash leaves infected by the invasive ascomycete Hymenoscyphus fraxineus.
New Phytol. 2017 Feb;213(3):1405-1417. doi: 10.1111/nph.14204. Epub 2016 Sep 26.
6
A Metabarcoding Survey on the Fungal Microbiota Associated to the Olive Fruit Fly.
Microb Ecol. 2017 Apr;73(3):677-684. doi: 10.1007/s00248-016-0864-z. Epub 2016 Sep 29.
7
Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes.
FEMS Microbiol Rev. 2016 Sep;40(5):686-700. doi: 10.1093/femsre/fuw017. Epub 2016 Jun 29.
8
Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics.
Front Microbiol. 2016 Apr 20;7:459. doi: 10.3389/fmicb.2016.00459. eCollection 2016.
9
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update.
Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10. doi: 10.1093/nar/gkw343. Epub 2016 May 2.
10
The Ebb and Flow of Airborne Pathogens: Monitoring and Use in Disease Management Decisions.
Phytopathology. 2016 May;106(5):420-31. doi: 10.1094/PHYTO-02-16-0060-RVW. Epub 2016 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验