文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

设计用于活细胞中可逆光控生物正交催化的异质钯催化剂。

Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells.

机构信息

Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.

University of Chinese Academy of Sciences, Beijing, 100039, China.

出版信息

Nat Commun. 2018 Mar 23;9(1):1209. doi: 10.1038/s41467-018-03617-x.


DOI:10.1038/s41467-018-03617-x
PMID:29572444
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5865172/
Abstract

As a powerful tool for chemical biology, bioorthogonal chemistry broadens the ways to explore the mystery of life. In this field, transition metal catalysts (TMCs) have received much attention because TMCs can rapidly catalyze chemical transformations that cannot be accomplished by bio-enzymes. However, fine controlling chemical reactions in living systems like bio-enzymes is still a great challenge. Herein, we construct a versatile light-controlled bioorthogonal catalyst by modifying macroporous silica-Pd with supramolecular complex of azobenzene (Azo) and β-cyclodextrin (CD). Its catalytic activity can be regulated by light-induced structural changes, mimicking allosteric regulation mechanism of bio-enzymes. The light-gated heterogeneous TMCs are important for in situ controlling bioorthogonal reactions and have been successfully used to synthesize a fluorescent probe for cell imaging and mitochondria-specific targeting agent by Suzuki-Miyaura cross-coupling reaction. Endowing the bioorthogonal catalyst with new functions is highly valuable for realizing more complex researches in biochemistry.

摘要

作为化学生物学的有力工具,生物正交化学拓宽了探索生命奥秘的途径。在这个领域中,过渡金属催化剂(TMCs)受到了广泛关注,因为 TMCs 可以快速催化生物酶无法完成的化学反应。然而,像生物酶一样精细控制生物体系中的化学反应仍然是一个巨大的挑战。在此,我们通过用超分子偶氮苯(Azo)和β-环糊精(CD)修饰介孔硅-Pd 构建了一种多功能的光控生物正交催化剂。其催化活性可以通过光诱导的结构变化来调节,模拟生物酶的别构调节机制。这种光控异相 TMCs 对于原位控制生物正交反应非常重要,并已成功用于通过 Suzuki-Miyaura 偶联反应合成荧光探针用于细胞成像和线粒体靶向。赋予生物正交催化剂新的功能对于实现更复杂的生物化学研究具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e998/5865172/f6d141eb03fc/41467_2018_3617_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e998/5865172/8bf3e9de48b9/41467_2018_3617_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e998/5865172/be77b690415e/41467_2018_3617_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e998/5865172/2035ca64ebbd/41467_2018_3617_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e998/5865172/f6d141eb03fc/41467_2018_3617_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e998/5865172/8bf3e9de48b9/41467_2018_3617_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e998/5865172/be77b690415e/41467_2018_3617_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e998/5865172/2035ca64ebbd/41467_2018_3617_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e998/5865172/f6d141eb03fc/41467_2018_3617_Fig4_HTML.jpg

相似文献

[1]
Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells.

Nat Commun. 2018-3-23

[2]
Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts.

Nat Chem. 2015-7

[3]
Palladium nanoparticles captured onto spherical silica particles using a urea cross-linked imidazolium molecular band.

Chem Commun (Camb). 2007-12-28

[4]
Designer Nanoreactors for Bioorthogonal Catalysis.

Acc Chem Res. 2024-2-6

[5]
Synthesis of polystyrene microspheres and functionalization with Pd(0) nanoparticles to perform bioorthogonal organometallic chemistry in living cells.

Nat Protoc. 2012-5-31

[6]
In-Cell Dual Drug Synthesis by Cancer-Targeting Palladium Catalysts.

Angew Chem Int Ed Engl. 2017-5-9

[7]
"Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.

Acc Chem Res. 2013-11-11

[8]
Integration of Palladium Nanoparticles with Surface Engineered Metal-Organic Frameworks for Cell-Selective Bioorthogonal Catalysis and Protein Activity Regulation.

ACS Appl Mater Interfaces. 2022-3-2

[9]
Transition Metal Ru(II) Catalysts Immobilized Nanoreactors for Conditional Bioorthogonal Catalysis in Cells.

ACS Appl Mater Interfaces. 2024-4-3

[10]
Rational Utilization of Black Phosphorus Nanosheets to Enhance Palladium-Mediated Bioorthogonal Catalytic Activity for Activation of Therapeutics.

Angew Chem Int Ed Engl. 2023-5-2

引用本文的文献

[1]
Supramolecular Materials and Strategies for Bioorthogonal Chemical Transformations.

Chem Rev. 2025-8-13

[2]
Preparation and identification of new magnetic heterogeneous nanostructural palladium catalyst, and its catalytic study in Suzuki and Stille reactions.

Sci Rep. 2025-7-12

[3]
Near-Infrared Light-Accelerated Bioorthogonal Drug Uncaging and Photothermal Ablation by Anisotropic Pd@Au Plasmonic Nanorods.

J Am Chem Soc. 2025-7-9

[4]
Ppm level palladium catalyzed regioselective remote arylation of alkenyl alcohols.

Chem Sci. 2025-6-3

[5]
Gold-modified nanoporous silicon for photoelectrochemical regulation of intracellular condensates.

Nat Nanotechnol. 2025-4-15

[6]
A bacteria-based bioorthogonal platform disrupts the flexible lipid homeostasis for potent metabolic therapy.

Chem Sci. 2025-2-28

[7]
Exploring New Bioorthogonal Catalysts: Scaffold Diversity in Catalysis for Chemical Biology.

Adv Sci (Weinh). 2025-3

[8]
Ultrathin silica-tiling on living cells for chemobiotic catalysis.

Nat Commun. 2024-7-10

[9]
Critical learning from industrial catalysis for nanocatalytic medicine.

Nat Commun. 2024-5-8

[10]
Extracellular Vesicles-Mediated Bio-Orthogonal Catalysis in Growing Tumors.

Cells. 2024-4-16

本文引用的文献

[1]
Limb development: a paradigm of gene regulation.

Nat Rev Genet. 2017-2-6

[2]
Copper Catalysis in Living Systems and In Situ Drug Synthesis.

Angew Chem Int Ed Engl. 2016-11-15

[3]
Spatiotemporal control of cell-cell reversible interactions using molecular engineering.

Nat Commun. 2016-10-6

[4]
Heterogeneous Photocatalytic Click Chemistry.

J Am Chem Soc. 2016-9-30

[5]
Transition metal catalysis in the mitochondria of living cells.

Nat Commun. 2016-9-7

[6]
Erratum to: Bioorthogonal Chemistry-Introduction and Overview.

Top Curr Chem (Cham). 2016-2-25

[7]
Photo-Triggered Click Chemistry for Biological Applications.

Top Curr Chem (Cham). 2015-12-11

[8]
Pre-transmetalation intermediates in the Suzuki-Miyaura reaction revealed: The missing link.

Science. 2016-4-15

[9]
Light-Activated Staudinger-Bertozzi Ligation within Living Animals.

J Am Chem Soc. 2016-4-13

[10]
Design of Surface-Active Artificial Enzyme Particles to Stabilize Pickering Emulsions for High-Performance Biphasic Biocatalysis.

Adv Mater. 2015-12-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索