Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCRs) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea.
Acc Chem Res. 2024 Feb 6;57(3):413-427. doi: 10.1021/acs.accounts.3c00735. Epub 2024 Jan 20.
The evolutionary complexity of compartmentalized biostructures (such as cells and organelles) endows life-sustaining multistep chemical cascades and intricate living functionalities. Relatively, within a very short time span, a synthetic paradigm has resulted in tremendous growth in controlling the materials at different length scales (molecular, nano, micro, and macro), improving mechanistic understanding and setting the design principals toward different compositions, configurations, and structures, and in turn fine-tuning their optoelectronic and catalytic properties for targeted applications. Bioorthogonal catalysis offers a highly versatile toolkit for biochemical modulation and the capability to perform reactions inside living systems, endowing augmented functions. However, conventional catalysts have limitations to control the reactions under physiological conditions due to the hostile bioenvironment. The present account details the development of bioapplicable multicomponent designer nanoreactors (NRs), where the compositions, morphologies, interfacial active sites, and microenvironments around different metal nanocatalysts can be precisely controlled by novel nanospace-confined chemistries. Different architectures of porous, hollow, and open-mouth silica-based nano-housings facilitate the accommodation, protection, and selective access of different nanoscale metal-based catalytic sites. The modular porosity/composition, optical transparency, thermal insulation, and nontoxicity of silica are highly useful. Moreover, large macropores or cavities can also be occupied by enzymes (for chemoenzymatic cascades) and selectivity enhancers (for stimuli-responsive gating) along with the metal nanocatalysts. Further, it is crucial to selectively activate and control catalytic reactions by a remotely operable biocompatible energy source. Integration of highly coupled plasmonic (Au) components having few-nanometer structural features (gaps, cavities, and junctions as electromagnetic hot-spots) endows an opportunity to efficiently harness low-power NIR light and selectively supply energy to the interfacial catalytic sites through localized photothermal and electronic effects. Different plasmonically integrated NRs with customizable plasmonic-catalytic components, cavities inside bilayer nanospaces, and metal-laminated nanocrystals inside hollow silica can perform NIR-/light-induced catalytic reactions in complex media including living cells. In addition, magnetothermia-induced NRs by selective growth of catalytic metals on a pre-installed superparamagnetic iron-oxide core inside a hollow-porous silica shell endowed the opportunity to apply AMF as a bioorthogonal stimulus to promote catalytic reactions. By combining "plasmonic-catalytic" and "magnetic-catalytic" components within a single NR, two distinct reaction steps can be desirably controlled by two energy sources (NIR light and AMF) of distinct energy regimes. The capability to perform multistep organic molecular transformations in harmony with the natural living system will reveal novel reaction schemes for synthesis of active drug and bioimaging probes. Well-designed nanoscale discrete architectures of NRs can facilitate spatiotemporal control over chemical synthesis without adversely affecting the cell viability. However, in-depth understanding of heterogeneous surface catalytic reactions, rate induction mechanisms, selectivity control pathways, and targeted nanobio interactions is necessary. The broad field of biomedical engineering can hugely benefit from the aid of novel nanomaterials with chemistry-based designs and the synthesis of engineered NRs performing unique bioorthogonal chemistry functions.
生物正交催化为生物化学调节提供了一个高度通用的工具包,并具有在活体内进行反应的能力,赋予了增强的功能。然而,由于恶劣的生物环境,传统催化剂在控制生理条件下的反应方面存在局限性。本研究详细介绍了生物适形的多组分设计纳米反应器 (NR) 的发展,其中可以通过新型纳米空间限制化学精确控制不同金属纳米催化剂的组成、形态、界面活性位点和微环境。不同的多孔、中空和开口硅基纳米外壳结构有利于容纳、保护和选择性进入不同的纳米级金属基催化位点。硅的模块化孔隙率/组成、光学透明度、热绝缘和无毒特性非常有用。此外,大的大孔或空腔也可以被酶(用于化学酶级联反应)和选择性增强剂(用于刺激响应门控)以及金属纳米催化剂占据。此外,通过远程可操作的生物相容性能源选择性地激活和控制催化反应至关重要。具有少数纳米结构特征(间隙、空腔和结作为电磁热点)的高度耦合等离子体 (Au) 组件的集成赋予了有效利用低功率近红外光并通过局部光热和电子效应选择性地将能量供应给界面催化位点的机会。具有可定制等离子体-催化组件、双层纳米空间内部空腔和中空硅内部金属层状纳米晶体的不同等离子体集成 NR 可以在包括活细胞在内的复杂介质中进行近红外/NIR 光诱导的催化反应。此外,通过在中空多孔硅壳内预先安装的超顺磁氧化铁核上选择性生长催化金属,磁热诱导 NR 提供了应用 AMF 作为生物正交刺激来促进催化反应的机会。通过在单个 NR 内组合“等离子体-催化”和“磁性-催化”组件,可以通过两个不同能量范围的能源(近红外光和 AMF)来理想地控制两个不同的反应步骤。与自然生命系统和谐地进行多步有机分子转化的能力将为活性药物和生物成像探针的合成揭示新的反应方案。NR 的纳米级离散设计的良好设计可以促进化学合成的时空控制,而不会对细胞活力产生不利影响。然而,需要深入了解多相表面催化反应、速率诱导机制、选择性控制途径和靶向纳米生物相互作用。生物医学工程的广阔领域将从基于化学设计的新型纳米材料和执行独特生物正交化学功能的工程 NR 的合成中受益匪浅。
Acc Chem Res. 2024-2-6
Angew Chem Int Ed Engl. 2020-6-8
Adv Drug Deliv Rev. 2021-9
Acc Chem Res. 2015-3-2
Acc Chem Res. 2012-12-26
Angew Chem Int Ed Engl. 2021-7-19
Adv Sci (Weinh). 2025-3