Bodiba Dikonketso Cathrine, Prasad Preety, Srivastava Ajay, Crampton Brigdet, Lall Namrita Sharan
Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
Department of Botany, St. Xavier's College, Ranchi, Jharkhand, India.
Pharmacogn Mag. 2018 Jan-Mar;14(53):76-80. doi: 10.4103/pm.pm_102_17. Epub 2018 Feb 20.
Curative plants have reportedly been used to make chewing sticks/toothbrushes intended for the treatment of oral diseases.
The antibacterial activities of , , , and were evaluated against , along with the cytotoxicity and antioxidant and synergistic potentials. The effect of on the expression of crucial virulence genes and of S. mutans was determined.
The antibacterial activity was determined using a modified microdilution method. The antioxidant potential was evaluated using diphenyl picrylhydrazyl (DPPH), Griess reagent, and nitroblue tetrazolium calorimetric assays. The synergistic activity was investigated using a modified checkerboard method, while the cytotoxicity was determined according to a cell proliferation 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt assay. Reverse transcription was the chosen method for determining the difference in expression of the and genes after treatment with the plant sample.
and had the highest antibacterial activity at concentrations of 0.3 mg/ml and 6.25 mg/ml, respectively. had the best free radical scavenging of DPPH, exhibiting 50% inhibition at 28.72 μg/ml; while showed better superoxide scavenging potential than the positive control quercetin. Both and had adequate activity against the nitric oxide-free radical (12.87 and 18.89 μg/ml, respectively). selectively reduced the expression of the gene, indicating a mechanism involving Glucotranferases, specifically targeting bacterial attachment.
and had very good antibacterial activity against and moderate toxicity against Vero cells had the best antioxidant capacity overall reduced the expression of gene at 0.5 mg/ml. : AA: Ascorbic acid; BHI: Brain-heart infusion; CHX: Chlorhexidine; DPPH: Diphenyl picrylhydrazyl; DMSO: Dimethlysulfoxide; NBT: Nitroblue tetrazolium; NO: Nitric oxide.
据报道,药用植物已被用于制作旨在治疗口腔疾病的咀嚼棒/牙刷。
评估了[植物名称1]、[植物名称2]、[植物名称3]和[植物名称4]对变形链球菌的抗菌活性,以及细胞毒性、抗氧化和协同作用潜力。测定了[植物名称]对变形链球菌关键毒力基因gtfB和gtfC表达的影响。
采用改良微量稀释法测定抗菌活性。使用二苯基苦味酰基自由基(DPPH)、格里斯试剂和硝基蓝四唑比色法评估抗氧化潜力。采用改良棋盘法研究协同活性,同时根据细胞增殖2,3-双-(2-甲氧基-4-硝基-5-磺基苯基)-2H-四唑-5-甲酰苯胺盐试验测定细胞毒性。采用逆转录法测定植物样品处理后gtfB和gtfC基因表达的差异。
[植物名称1]和[植物名称2]分别在浓度为0.3mg/ml和6.25mg/ml时具有最高的抗菌活性。[植物名称3]对DPPH具有最佳的自由基清除能力,在28.72μg/ml时表现出50%的抑制率;而[植物名称4]显示出比阳性对照槲皮素更好的超氧阴离子清除潜力。[植物名称3]和[植物名称4]对一氧化氮自由基均具有足够的活性(分别为12.87和18.89μg/ml)。[植物名称]选择性降低了gtfB基因的表达,表明其作用机制涉及葡糖基转移酶,特别是针对细菌黏附。
[植物名称1]和[植物名称2]对变形链球菌具有非常好的抗菌活性,对Vero细胞具有中等毒性,[植物名称3]总体上具有最佳的抗氧化能力,在0.5mg/ml时降低了gtfB基因的表达。:AA:抗坏血酸;BHI:脑心浸液;CHX:氯己定;DPPH:二苯基苦味酰基自由基;DMSO:二甲基亚砜;NBT:硝基蓝四唑;NO:一氧化氮。