Tinzl Matthias, Diedrich Johannes V, Mittl Peer R E, Clémancey Martin, Reiher Markus, Proppe Jonny, Latour Jean-Marc, Hilvert Donald
Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.
Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38106 Braunschweig, Germany.
J Am Chem Soc. 2024 Jan 24;146(3):1957-1966. doi: 10.1021/jacs.3c09279. Epub 2024 Jan 9.
Nitrene transfer reactions catalyzed by heme proteins have broad potential for the stereoselective formation of carbon-nitrogen bonds. However, competition between productive nitrene transfer and the undesirable reduction of nitrene precursors limits the broad implementation of such biocatalytic methods. Here, we investigated the reduction of azides by the model heme protein myoglobin to gain mechanistic insights into the factors that control the fate of key reaction intermediates. In this system, the reaction proceeds via a proposed nitrene intermediate that is rapidly reduced and protonated to give a reactive ferrous amide species, which we characterized by UV/vis and Mössbauer spectroscopies, quantum mechanical calculations, and X-ray crystallography. Rate-limiting protonation of the ferrous amide to produce the corresponding amine is the final step in the catalytic cycle. These findings contribute to our understanding of the heme protein-catalyzed reduction of azides and provide a guide for future enzyme engineering campaigns to create more efficient nitrene transferases. Moreover, harnessing the reduction reaction in a chemoenzymatic cascade provided a potentially practical route to substituted pyrroles.
血红素蛋白催化的氮宾转移反应在立体选择性形成碳氮键方面具有广阔的潜力。然而,有效的氮宾转移与氮宾前体不期望的还原之间的竞争限制了此类生物催化方法的广泛应用。在此,我们研究了模型血红素蛋白肌红蛋白对叠氮化物的还原反应,以深入了解控制关键反应中间体命运的因素的作用机制。在该体系中,反应通过一个假定的氮宾中间体进行,该中间体迅速被还原并质子化,生成一种活性亚铁酰胺物种,我们通过紫外/可见光谱、穆斯堡尔光谱、量子力学计算和X射线晶体学对其进行了表征。亚铁酰胺限速质子化生成相应的胺是催化循环的最后一步。这些发现有助于我们理解血红素蛋白催化的叠氮化物还原反应,并为未来的酶工程改造提供指导,以创造更高效的氮宾转移酶。此外,在化学酶级联反应中利用该还原反应为合成取代吡咯提供了一条潜在的实用途径。