Raffoux Xavier, Bourge Mickael, Dumas Fabrice, Martin Olivier C, Falque Matthieu
GQE- Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.
Cytometry/Electronic Microscopy/Light Microcopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France.
Yeast. 2018 Jun;35(6):431-442. doi: 10.1002/yea.3315. Epub 2018 Apr 30.
Allelic recombination owing to meiotic crossovers is a major driver of genome evolution, as well as a key player for the selection of high-performing genotypes in economically important species. Therefore, we developed a high-throughput and low-cost method to measure recombination rates and crossover patterning (including interference) in large populations of the budding yeast Saccharomyces cerevisiae. Recombination and interference were analysed by flow cytometry, which allows time-consuming steps such as tetrad microdissection or spore growth to be avoided. Moreover, our method can also be used to compare recombination in wild-type vs. mutant individuals or in different environmental conditions, even if the changes in recombination rates are small. Furthermore, meiotic mutants often present recombination and/or pairing defects affecting spore viability but our method does not involve growth steps and thus avoids filtering out non-viable spores.
由于减数分裂交叉导致的等位基因重组是基因组进化的主要驱动力,也是经济重要物种中高性能基因型选择的关键因素。因此,我们开发了一种高通量、低成本的方法来测量酿酒酵母大群体中的重组率和交叉模式(包括干涉)。通过流式细胞术分析重组和干涉,这样可以避免诸如四分体显微切割或孢子生长等耗时步骤。此外,即使重组率变化很小,我们的方法也可用于比较野生型与突变个体之间或不同环境条件下的重组情况。此外,减数分裂突变体通常存在影响孢子活力的重组和/或配对缺陷,但我们的方法不涉及生长步骤,因此避免了筛选出无活力的孢子。