Suppr超能文献

硝基脂肪酸介导的炎症信号传导与代谢调控

Inflammatory signaling and metabolic regulation by nitro-fatty acids.

作者信息

Rom Oren, Khoo Nicholas K H, Chen Y Eugene, Villacorta Luis

机构信息

Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, USA.

Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA.

出版信息

Nitric Oxide. 2018 Mar 22. doi: 10.1016/j.niox.2018.03.017.

Abstract

The addition of nitrogen dioxide (NO) to the double bond of unsaturated fatty acids yields an array of electrophilic nitro-fatty acids (NO-FA) with unique biochemical and signaling properties. During the last decade, NO-FA have been shown to exert a protective role in various inflammatory and metabolic disorders. NO-FA exert their biological effects primarily by regulating two central physiological adaptive responses: the canonical inflammatory signaling and metabolic pathways. In this mini-review, we summarize current knowledge on the regulatory role of NO-FA in the inflammatory and metabolic response via regulation of nuclear factor kappa B (NF-κB) and peroxisome proliferator-activated receptor γ (PPARγ), master regulators of inflammation and metabolism. Moreover, the engagement of novel signaling and metabolic pathways influenced by NO-FA, beyond NF-κB and PPAR signaling, is discussed herein.

摘要

向不饱和脂肪酸的双键中添加二氧化氮(NO)会产生一系列具有独特生化和信号特性的亲电硝基脂肪酸(NO-FA)。在过去十年中,NO-FA已被证明在各种炎症和代谢紊乱中发挥保护作用。NO-FA主要通过调节两种核心生理适应性反应发挥其生物学效应:经典炎症信号传导和代谢途径。在本综述中,我们总结了目前关于NO-FA通过调节炎症和代谢的主要调节因子核因子κB(NF-κB)和过氧化物酶体增殖物激活受体γ(PPARγ)在炎症和代谢反应中的调节作用的知识。此外,本文还讨论了受NO-FA影响的、超出NF-κB和PPAR信号传导的新型信号传导和代谢途径。

相似文献

1
Inflammatory signaling and metabolic regulation by nitro-fatty acids.
Nitric Oxide. 2018 Mar 22. doi: 10.1016/j.niox.2018.03.017.
2
A FABP4-PPARγ signaling axis regulates human monocyte responses to electrophilic fatty acid nitroalkenes.
Redox Biol. 2020 Jan;29:101376. doi: 10.1016/j.redox.2019.101376. Epub 2019 Nov 10.
3
Electrophilic characteristics and aqueous behavior of fatty acid nitroalkenes.
Redox Biol. 2021 Jan;38:101756. doi: 10.1016/j.redox.2020.101756. Epub 2020 Oct 12.
4
Electrophilic nitro-fatty acids inhibit vascular inflammation by disrupting LPS-dependent TLR4 signalling in lipid rafts.
Cardiovasc Res. 2013 Apr 1;98(1):116-24. doi: 10.1093/cvr/cvt002. Epub 2013 Jan 17.
5
Nitrated fatty acids in cardiovascular diseases.
Nitric Oxide. 2018 Mar 26. doi: 10.1016/j.niox.2018.03.016.
7
Nitro-fatty acids: formation, redox signaling, and therapeutic potential.
Antioxid Redox Signal. 2013 Oct 10;19(11):1257-65. doi: 10.1089/ars.2012.5023. Epub 2012 Dec 20.
9
Nitro-fatty acids: electrophilic signaling molecules in plant physiology.
Planta. 2021 Nov 13;254(6):120. doi: 10.1007/s00425-021-03777-z.
10
Protection of nitro-fatty acid against kidney diseases.
Am J Physiol Renal Physiol. 2016 Apr 15;310(8):F697-F704. doi: 10.1152/ajprenal.00321.2015. Epub 2015 Dec 30.

引用本文的文献

1
Fatty acid nitroalkenes regulate intestinal lipid absorption.
J Lipid Res. 2025 Aug;66(8):100855. doi: 10.1016/j.jlr.2025.100855. Epub 2025 Jul 4.
2
Fatty acid nitroalkene reversal of established lung fibrosis.
Redox Biol. 2022 Apr;50:102226. doi: 10.1016/j.redox.2021.102226. Epub 2021 Dec 29.
3
Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies.
Foods. 2021 Apr 16;10(4):872. doi: 10.3390/foods10040872.
4
Endogenous generation of nitro-fatty acid hybrids having dual nitrate ester (RONO) and nitroalkene (RNO) substituents.
Redox Biol. 2021 May;41:101913. doi: 10.1016/j.redox.2021.101913. Epub 2021 Feb 24.
5
Nitro-fatty acids as activators of hSIRT6 deacetylase activity.
J Biol Chem. 2020 Dec 25;295(52):18355-18366. doi: 10.1074/jbc.RA120.014883. Epub 2020 Oct 29.
7
A FABP4-PPARγ signaling axis regulates human monocyte responses to electrophilic fatty acid nitroalkenes.
Redox Biol. 2020 Jan;29:101376. doi: 10.1016/j.redox.2019.101376. Epub 2019 Nov 10.
9
Nitro-Fatty Acid Logistics: Formation, Biodistribution, Signaling, and Pharmacology.
Trends Endocrinol Metab. 2019 Aug;30(8):505-519. doi: 10.1016/j.tem.2019.04.009. Epub 2019 Jun 10.

本文引用的文献

3
Nitro-fatty acid inhibition of triple-negative breast cancer cell viability, migration, invasion, and tumor growth.
J Biol Chem. 2018 Jan 26;293(4):1120-1137. doi: 10.1074/jbc.M117.814368. Epub 2017 Nov 20.
4
Foundations of Immunometabolism and Implications for Metabolic Health and Disease.
Immunity. 2017 Sep 19;47(3):406-420. doi: 10.1016/j.immuni.2017.08.009.
5
Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion.
Science. 2017 Aug 11;357(6351):570-575. doi: 10.1126/science.aam9949.
6
PPARγ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation.
J Exp Med. 2017 Oct 2;214(10):3015-3035. doi: 10.1084/jem.20162069. Epub 2017 Aug 10.
7
Evaluation of 10-Nitro Oleic Acid Bio-Elimination in Rats and Humans.
Sci Rep. 2017 Jan 5;7:39900. doi: 10.1038/srep39900.
8
Nitro-fatty acid pharmacokinetics in the adipose tissue compartment.
J Lipid Res. 2017 Feb;58(2):375-385. doi: 10.1194/jlr.M072058. Epub 2016 Dec 2.
9
Nitro-oleic acid inhibits vascular endothelial inflammatory responses and the endothelial-mesenchymal transition.
Biochim Biophys Acta. 2016 Nov;1860(11 Pt A):2428-2437. doi: 10.1016/j.bbagen.2016.07.010. Epub 2016 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验