Department of Chemical Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.
Nano Lett. 2018 Apr 11;18(4):2696-2704. doi: 10.1021/acs.nanolett.8b00670. Epub 2018 Apr 2.
Although tremendous applications for metal nanoparticles have been found in modern technologies, the understanding of their stability as related to morphology (size and shape) and chemical ordering (e.g., in bimetallics) remains limited. First-principles methods such as density functional theory (DFT) are capable of capturing accurate nanoalloy energetics; however, they are limited to very small nanoparticle sizes (<2 nm in diameter) due to their computational cost. Herein, we propose a bond-centric (BC) model able to capture cohesive energy trends over a range of monometallic and bimetallic nanoparticles and mixing behavior (excess energy) of nanoalloys, in great agreement with DFT calculations. We apply the BC model to screen the energetics of a recently reported 23 196-atom FePt nanoalloys ( Yang et al. Nature 2017 , 542 , 75 - 79 ), offering insights into both segregation and bulk-chemical ordering behavior. Because the BC model utilizes tabulated data (diatomic bond energies and bulk cohesive energies) and structural information on nanoparticles (coordination numbers), it can be applied to calculate the energetics of any nanoparticle morphology and chemical composition, thus significantly accelerating nanoalloy design.
尽管金属纳米粒子在现代技术中有广泛的应用,但人们对其稳定性与形态(尺寸和形状)和化学有序性(例如,在双金属中)的关系的理解仍然有限。密度泛函理论(DFT)等第一性原理方法能够捕捉准确的纳米合金能量;然而,由于计算成本的限制,它们仅限于非常小的纳米粒子尺寸(<2nm 直径)。在此,我们提出了一种基于键的(BC)模型,能够捕捉一系列单金属和双金属纳米粒子的内聚能趋势和纳米合金的混合行为(过剩能),与 DFT 计算结果非常吻合。我们将 BC 模型应用于筛选最近报道的 23196 个原子 FePt 纳米合金的能量(Yang 等人,自然,2017 年,542,75-79),深入了解了偏析和体化学有序行为。由于 BC 模型利用了数据表(双原子键能和体内聚能)和纳米粒子的结构信息(配位数),因此可以应用于计算任何纳米粒子形态和化学成分的能量,从而显著加速纳米合金的设计。