Suppr超能文献

基于物理的机器学习对多金属纳米颗粒进行快速原子结构预测

Rapid Atomic Structure Prediction of Multimetallic Nanoparticles with Physics-Based Machine Learning.

作者信息

Alkhatib Bassel, Salem Maya, Hesselink Klaertje Kiyora, Mpourmpakis Giannis

机构信息

Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.

出版信息

ACS Omega. 2025 Jul 14;10(28):30996-31008. doi: 10.1021/acsomega.5c04082. eCollection 2025 Jul 22.

Abstract

Metal nanoparticles (NPs) find tremendous application in various fields, including catalysis, biomedicine, and electronics, due to their unique physicochemical properties arising from their morphology (i.e., size and shape) and composition. The chemical ordering of NPs, consisting of more than one metal, is crucial for optimizing their application performance, including stability. Traditionally, Density Functional Theory (DFT) has been used to investigate NP stability, but it is computationally expensive, limited to small systems, and cannot be applied to multimetallic NPs, which have enormous materials space. To address this limitation, recent efforts coupled a physics-based model (Bond-Centric Model) with a developed genetic algorithm to optimize the chemical ordering of NPs, leading to minimum (most exothermic) cohesive energies. Central to this approach is the calculation of weighting factors that scale the monometallic bond strength to describe that of the bimetallic bond. Herein, we perform a critical analysis and set some rules on how to apply these methods for rapid and accurate chemical ordering prediction of multimetallic NPs. Specifically, we optimized the chemical ordering of 2869-atom cuboctahedron NPs across 15 different bimetallic combinations and at varying metal compositions. In comparison with both experimental and computational results, our findings indicate that the use of small metal dimers for the calculation of the weighting factors leads to accurate and computationally efficient chemical ordering and stability predictions for a wide range of NP compositions. We further extended our investigation to 6 trimetallic NPs with a tremendously large materials space, testing our model's capability to predict chemical ordering patterns in multimetallic systems and demonstrating its power as a rapid and accurate computational method. This methodology can facilitate the design of thermodynamically stable multimetallic NPs and predict the distribution of different metal atoms from the core to the surface, which is central to any nanotechnological application.

摘要

金属纳米颗粒(NPs)因其形态(即尺寸和形状)和组成所产生的独特物理化学性质,在催化、生物医学和电子等各个领域都有广泛应用。由不止一种金属组成的NPs的化学有序性对于优化其应用性能(包括稳定性)至关重要。传统上,密度泛函理论(DFT)已被用于研究NP稳定性,但它计算成本高,仅限于小系统,且不能应用于具有巨大材料空间的多金属NPs。为解决这一局限性,最近的研究将基于物理的模型(键中心模型)与开发的遗传算法相结合,以优化NPs的化学有序性,从而得到最小(最放热)的内聚能。这种方法的核心是计算加权因子,该因子对单金属键强度进行缩放以描述双金属键的强度。在此,我们进行了批判性分析,并制定了一些规则,说明如何应用这些方法对多金属NPs进行快速准确的化学有序性预测。具体而言,我们在15种不同的双金属组合以及不同的金属组成下,对2869个原子的立方八面体NPs的化学有序性进行了优化。与实验和计算结果相比,我们的研究结果表明,使用小金属二聚体来计算加权因子,能够对广泛的NP组成进行准确且计算高效的化学有序性和稳定性预测。我们进一步将研究扩展到具有巨大材料空间的6种三金属NPs,测试了我们的模型预测多金属系统中化学有序模式的能力,并证明了其作为一种快速准确的计算方法的威力。这种方法可以促进热力学稳定的多金属NPs的设计,并预测从核心到表面不同金属原子的分布,这对于任何纳米技术应用都至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6945/12290662/b393a99413dd/ao5c04082_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验