Najem Joseph S, Taylor Graham J, Weiss Ryan J, Hasan Md Sakib, Rose Garrett, Schuman Catherine D, Belianinov Alex, Collier C Patrick, Sarles Stephen A
Joint Institute for Biological Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States.
Department of Mechanical, Aerospace and Biomedical Engineering , University of Tennessee , Knoxville , Tennessee 37916 , United States.
ACS Nano. 2018 May 22;12(5):4702-4711. doi: 10.1021/acsnano.8b01282. Epub 2018 Mar 29.
Solid-state neuromorphic systems based on transistors or memristors have yet to achieve the interconnectivity, performance, and energy efficiency of the brain due to excessive noise, undesirable material properties, and nonbiological switching mechanisms. Here we demonstrate that an alamethicin-doped, synthetic biomembrane exhibits memristive behavior, emulates key synaptic functions including paired-pulse facilitation and depression, and enables learning and computing. Unlike state-of-the-art devices, our two-terminal, biomolecular memristor features similar structure (biomembrane), switching mechanism (ion channels), and ionic transport modality as biological synapses while operating at considerably lower power. The reversible and volatile voltage-driven insertion of alamethicin peptides into an insulating lipid bilayer creates conductive pathways that exhibit pinched current-voltage hysteresis at potentials above their insertion threshold. Moreover, the synapse-like dynamic properties of the biomolecular memristor allow for simplified learning circuit implementations. Low-power memristive devices based on stimuli-responsive biomolecules represent a major advance toward implementation of full synaptic functionality in neuromorphic hardware.
基于晶体管或忆阻器的固态神经形态系统,由于存在过多噪声、不良材料特性以及非生物开关机制,尚未实现大脑的互连性、性能和能源效率。在此,我们证明了一种掺入阿拉米辛的合成生物膜具有忆阻行为,可模拟包括双脉冲易化和抑制在内的关键突触功能,并实现学习和计算。与现有技术的设备不同,我们的双端生物分子忆阻器具有与生物突触相似的结构(生物膜)、开关机制(离子通道)和离子传输方式,同时以低得多的功率运行。阿拉米辛肽可逆且易失性地电压驱动插入绝缘脂质双分子层中,形成导电通路,该通路在高于其插入阈值的电位下呈现出收缩的电流-电压滞后现象。此外,生物分子忆阻器类似突触的动态特性允许简化学习电路的实现。基于刺激响应性生物分子的低功耗忆阻器件代表了在神经形态硬件中实现完整突触功能方面的一项重大进展。