Suppr超能文献

预测变化世界中的植物迁移速率:长距离扩散的作用。

Predicting Plant Migration Rates in a Changing World: The Role of Long-Distance Dispersal.

作者信息

Higgins Steven I, Richardson David M

出版信息

Am Nat. 1999 May;153(5):464-475. doi: 10.1086/303193.

Abstract

Models of plant migration based on estimates of biological parameters severely underestimate the rate of spread when compared to empirical estimates of plant migration rates. This is disturbing, since an ability to predict migration and colonization rates is needed for predicting how native species will distribute themselves in response to habitat loss and climate change and how rapidly invasive species will spread. Part of the problem is the difficulty of formally including rare long-distance dispersal events in spread models. In this article, we explore the process of making predictions about plant migration rates. In particular, we examine the links between data, statistical models, and ecological predictions. We fit mixtures of Weibull distributions to several dispersal data sets and show that statistical and biological criteria for selecting the most appropriate statistical model conflict. Fitting a two-component mixture model to the same data increases the spread-rate prediction by an average factor of 4.5. Data limit our ability to fit more components. Using simulations, we show that a small proportion (0.001) of seeds moving long-distances (1-10 km) can lead to an order of magnitude increase in predicted spread rate. The analysis also suggests that most existing data sets on dispersal will not resolve the problem; more effort needs to be devoted to collecting data on long-distance dispersal. Although dispersal had the strongest effect on the predicted spread rate, we showed that dispersal interacts strongly with plant life history, disturbance, and habitat loss in influencing the predicted rate of spread. The importance of these interactions means that an approach that integrates local and long-distance dispersal with plant life history, disturbance, and habitat availability is essential for predicting migration rates.

摘要

与植物迁移速率的实证估计相比,基于生物学参数估计的植物迁移模型严重低估了扩散速率。这令人不安,因为预测本地物种将如何响应栖息地丧失和气候变化进行分布以及入侵物种将以多快的速度扩散,都需要具备预测迁移和定殖速率的能力。部分问题在于难以在扩散模型中正式纳入罕见的长距离扩散事件。在本文中,我们探讨了预测植物迁移速率的过程。特别是,我们研究了数据、统计模型和生态预测之间的联系。我们将威布尔分布的混合模型拟合到几个扩散数据集上,并表明选择最合适统计模型的统计标准和生物学标准相互冲突。将双组分混合模型拟合到相同数据上,会使扩散速率预测平均提高4.5倍。数据限制了我们拟合更多组分的能力。通过模拟,我们表明一小部分(0.001)远距离(1 - 10千米)移动的种子可导致预测扩散速率增加一个数量级。分析还表明,大多数现有的扩散数据集无法解决该问题;需要投入更多努力来收集长距离扩散的数据。尽管扩散对预测的扩散速率影响最大,但我们表明,在影响预测的扩散速率方面,扩散与植物生活史、干扰和栖息地丧失之间存在强烈的相互作用。这些相互作用的重要性意味着,将本地和长距离扩散与植物生活史、干扰和栖息地可利用性整合起来的方法对于预测迁移速率至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验