Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA.
Nanoscale. 2018 Apr 5;10(14):6751-6757. doi: 10.1039/c7nr06462d.
An unmet need in nanomedicine is to prepare biocompatible and renal clearable nanoparticles by controlling the diameter, composition and surface properties of the nanoparticles. This paper reports cellulose nanofiber templated synthesis of ultra-small bismuth nanoparticles, and their uses in enhanced X-ray radiation therapy. The interstitial spaces between adjacent fibers are the adsorption sites of bismuth ions and also stabilize nanoparticles generated by chemical reduction. The sizes of nanoparticles are tailored in the 2-10 nm range using cellulose nanofibers with various amounts of carboxyl groups. In vitro cytotoxicity, reactive oxygen species (ROS) and in vivo animal tests with tumor-bearing mice are studied in order to enhance X-ray radiation therapy using cellulose nanofiber-templated bismuth nanoparticles. Bismuth nanoparticles show strong X-ray attenuation ability, concentration-dependent cytotoxicity and high level production of ROS upon X-ray exposure, which is consistent with enhanced cellular damage and retarded growth of tumors in animals.
纳米医学中存在一个未满足的需求,即通过控制纳米粒子的直径、组成和表面性质来制备生物相容性和可经肾脏清除的纳米粒子。本文报道了纤维素纳米纤维模板合成超小铋纳米粒子及其在增强 X 射线放射治疗中的应用。相邻纤维之间的空隙是铋离子的吸附位点,同时也稳定了由化学还原生成的纳米粒子。通过使用具有不同羧基含量的纤维素纳米纤维,将纳米粒子的尺寸调整在 2-10nm 范围内。为了利用纤维素纳米纤维模板化的铋纳米粒子增强 X 射线放射治疗,研究了体外细胞毒性、活性氧(ROS)和荷瘤小鼠的体内动物试验。铋纳米粒子表现出很强的 X 射线衰减能力、浓度依赖性细胞毒性以及 X 射线照射下产生的高水平 ROS,这与动物体内细胞损伤的增强和肿瘤生长的减缓一致。