Suppr超能文献

通过预测器树进行个性化生存预测:在心脏移植中的应用。

Personalized survival predictions via Trees of Predictors: An application to cardiac transplantation.

机构信息

University of California Los Angeles, Los Angeles, California, United States of America.

Farr Institute of Health Informatics Research, University College, London, United Kingdom.

出版信息

PLoS One. 2018 Mar 28;13(3):e0194985. doi: 10.1371/journal.pone.0194985. eCollection 2018.

Abstract

BACKGROUND

Risk prediction is crucial in many areas of medical practice, such as cardiac transplantation, but existing clinical risk-scoring methods have suboptimal performance. We develop a novel risk prediction algorithm and test its performance on the database of all patients who were registered for cardiac transplantation in the United States during 1985-2015.

METHODS AND FINDINGS

We develop a new, interpretable, methodology (ToPs: Trees of Predictors) built on the principle that specific predictive (survival) models should be used for specific clusters within the patient population. ToPs discovers these specific clusters and the specific predictive model that performs best for each cluster. In comparison with existing clinical risk scoring methods and state-of-the-art machine learning methods, our method provides significant improvements in survival predictions, both post- and pre-cardiac transplantation. For instance: in terms of 3-month survival post-transplantation, our method achieves AUC of 0.660; the best clinical risk scoring method (RSS) achieves 0.587. In terms of 3-year survival/mortality predictions post-transplantation (in comparison to RSS), holding specificity at 80.0%, our algorithm correctly predicts survival for 2,442 (14.0%) more patients (of 17,441 who actually survived); holding sensitivity at 80.0%, our algorithm correctly predicts mortality for 694 (13.0%) more patients (of 5,339 who did not survive). ToPs achieves similar improvements for other time horizons and for predictions pre-transplantation. ToPs discovers the most relevant features (covariates), uses available features to best advantage, and can adapt to changes in clinical practice.

CONCLUSIONS

We show that, in comparison with existing clinical risk-scoring methods and other machine learning methods, ToPs significantly improves survival predictions both post- and pre-cardiac transplantation. ToPs provides a more accurate, personalized approach to survival prediction that can benefit patients, clinicians, and policymakers in making clinical decisions and setting clinical policy. Because survival prediction is widely used in clinical decision-making across diseases and clinical specialties, the implications of our methods are far-reaching.

摘要

背景

风险预测在医学实践的许多领域都至关重要,例如心脏移植,但现有的临床风险评分方法的性能并不理想。我们开发了一种新的风险预测算法,并在 1985 年至 2015 年期间在美国登记的所有心脏移植患者的数据库上测试其性能。

方法和发现

我们开发了一种新的、可解释的方法(ToPs:预测树),该方法基于这样一个原则,即特定的预测(生存)模型应该用于患者人群中的特定聚类。ToPs 发现这些特定的聚类和为每个聚类表现最好的特定预测模型。与现有的临床风险评分方法和最先进的机器学习方法相比,我们的方法在心脏移植前后的生存预测方面都有显著的改进。例如:在移植后 3 个月的生存率方面,我们的方法的 AUC 为 0.660;最好的临床风险评分方法(RSS)为 0.587。在移植后 3 年的生存/死亡率预测方面(与 RSS 相比),保持特异性为 80.0%,我们的算法正确预测了 17441 名实际存活患者中的 2442 名(14.0%)的存活情况;保持敏感性为 80.0%,我们的算法正确预测了 5339 名未存活患者中的 694 名(13.0%)的死亡情况。ToPs 在其他时间范围内和移植前预测中也取得了类似的改进。ToPs 发现了最相关的特征(协变量),充分利用了可用的特征,并能够适应临床实践的变化。

结论

与现有的临床风险评分方法和其他机器学习方法相比,我们的研究表明,ToPs 显著提高了心脏移植前后的生存预测。ToPs 提供了一种更准确、个性化的生存预测方法,使患者、临床医生和决策者能够在做出临床决策和制定临床政策时受益。由于生存预测在疾病和临床专业领域的临床决策中被广泛应用,因此我们方法的意义深远。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d848/5874060/f55c5a541be6/pone.0194985.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验