Suppr超能文献

tau 丝状断裂的测量提供了朊病毒样传播的深入了解。

Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.

机构信息

Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom.

MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , United Kingdom.

出版信息

ACS Chem Neurosci. 2018 Jun 20;9(6):1276-1282. doi: 10.1021/acschemneuro.8b00094. Epub 2018 Apr 8.

Abstract

The ordered assembly of amyloidogenic proteins causes a wide spectrum of common neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. These diseases share common features with prion diseases, in which misfolded proteins can self-replicate and transmit disease across different hosts. Deciphering the molecular mechanisms that underlie the amplification of aggregates is fundamental for understanding how pathological deposits can spread through the brain and drive disease. Here, we used single-molecule microscopy to study the assembly and replication of tau at the single aggregate level. We found that tau aggregates have an intrinsic ability to amplify by filament fragmentation, and determined the doubling times for this replication process by kinetic modeling. We then simulated the spreading time for aggregates through the brain and found this to be in good agreement with both the observed time frame for spreading of pathological tau deposits in Alzheimer's disease and in experimental models of tauopathies. With this work we begin to understand the physical parameters that govern the spreading rates of tau and other amyloids through the human brain.

摘要

淀粉样蛋白的有序组装导致了广泛的常见神经退行性疾病,包括阿尔茨海默病和帕金森病。这些疾病与朊病毒疾病有共同的特征,在朊病毒疾病中,错误折叠的蛋白质可以自我复制,并在不同宿主之间传播疾病。阐明导致聚集物扩增的分子机制对于理解病理性沉积物如何在大脑中传播并导致疾病至关重要。在这里,我们使用单分子显微镜在单个聚集体水平上研究了 tau 的组装和复制。我们发现 tau 聚集体具有通过丝状断裂进行自我扩增的内在能力,并通过动力学建模确定了该复制过程的倍增时间。然后,我们模拟了聚集体在大脑中的扩散时间,发现这与在阿尔茨海默病中观察到的病理性 tau 沉积物的扩散时间框架以及在 tau 病的实验模型中非常吻合。通过这项工作,我们开始了解控制 tau 和其他淀粉样蛋白在人类大脑中扩散速度的物理参数。

相似文献

1
Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.
ACS Chem Neurosci. 2018 Jun 20;9(6):1276-1282. doi: 10.1021/acschemneuro.8b00094. Epub 2018 Apr 8.
2
Invited review: Prion-like transmission and spreading of tau pathology.
Neuropathol Appl Neurobiol. 2015 Feb;41(1):47-58. doi: 10.1111/nan.12197.
3
First-in-Rat Study of Human Alzheimer's Disease Tau Propagation.
Mol Neurobiol. 2019 Jan;56(1):621-631. doi: 10.1007/s12035-018-1102-0. Epub 2018 May 16.
5
Alzheimer's disease brain contains tau fractions with differential prion-like activities.
Acta Neuropathol Commun. 2021 Feb 17;9(1):28. doi: 10.1186/s40478-021-01127-4.
7
The Prion-Like Behavior of Assembled Tau in Transgenic Mice.
Cold Spring Harb Perspect Med. 2017 Oct 3;7(10):a024372. doi: 10.1101/cshperspect.a024372.
10
The ordered assembly of tau is the gain-of-toxic function that causes human tauopathies.
Alzheimers Dement. 2016 Oct;12(10):1040-1050. doi: 10.1016/j.jalz.2016.09.001. Epub 2016 Sep 26.

引用本文的文献

3
Methods for high throughput discovery of fluoroprobes that recognize tau fibril polymorphs.
bioRxiv. 2024 Sep 2:2024.09.02.610853. doi: 10.1101/2024.09.02.610853.
4
Co-opting templated aggregation to degrade pathogenic tau assemblies and improve motor function.
Cell. 2024 Oct 17;187(21):5967-5980.e17. doi: 10.1016/j.cell.2024.08.024. Epub 2024 Sep 13.
5
Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease.
Neural Regen Res. 2025 Jun 1;20(6):1644-1664. doi: 10.4103/NRR.NRR-D-24-00107. Epub 2024 Jul 10.
6
Nanotechnology for tau pathology in Alzheimer's disease.
Mater Today Bio. 2024 Jul 2;27:101145. doi: 10.1016/j.mtbio.2024.101145. eCollection 2024 Aug.
8
Thermodynamic characterization of amyloid polymorphism by microfluidic transient incomplete separation.
Chem Sci. 2024 Jan 8;15(7):2528-2544. doi: 10.1039/d3sc05371g. eCollection 2024 Feb 14.
9
Super-resolution imaging unveils the self-replication of tau aggregates upon seeding.
Cell Rep. 2023 Jul 25;42(7):112725. doi: 10.1016/j.celrep.2023.112725. Epub 2023 Jul 1.

本文引用的文献

1
Propagation of Tau Aggregates and Neurodegeneration.
Annu Rev Neurosci. 2017 Jul 25;40:189-210. doi: 10.1146/annurev-neuro-072116-031153.
2
Characterization of tau prion seeding activity and strains from formaldehyde-fixed tissue.
Acta Neuropathol Commun. 2017 Jun 7;5(1):41. doi: 10.1186/s40478-017-0442-8.
3
Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation.
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):574-579. doi: 10.1073/pnas.1607215114. Epub 2017 Jan 3.
4
Widespread tau seeding activity at early Braak stages.
Acta Neuropathol. 2017 Jan;133(1):91-100. doi: 10.1007/s00401-016-1644-z. Epub 2016 Nov 22.
5
Single-Molecule Imaging of Individual Amyloid Protein Aggregates in Human Biofluids.
ACS Chem Neurosci. 2016 Mar 16;7(3):399-406. doi: 10.1021/acschemneuro.5b00324. Epub 2016 Feb 4.
6
The length distribution of frangible biofilaments.
J Chem Phys. 2015 Oct 28;143(16):164901. doi: 10.1063/1.4933230.
8
9
Parkinson's disease.
Lancet. 2015 Aug 29;386(9996):896-912. doi: 10.1016/S0140-6736(14)61393-3. Epub 2015 Apr 19.
10
Conformation determines the seeding potencies of native and recombinant Tau aggregates.
J Biol Chem. 2015 Jan 9;290(2):1049-65. doi: 10.1074/jbc.M114.589309. Epub 2014 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验