Suppr超能文献

疾病本体论:改善和统一跨物种的疾病注释。

Disease Ontology: improving and unifying disease annotations across species.

机构信息

The Jackson Laboratory, Bar Harbor, ME, USA

Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA.

出版信息

Dis Model Mech. 2018 Mar 12;11(3):dmm032839. doi: 10.1242/dmm.032839.

Abstract

Model organisms are vital to uncovering the mechanisms of human disease and developing new therapeutic tools. Researchers collecting and integrating relevant model organism and/or human data often apply disparate terminologies (vocabularies and ontologies), making comparisons and inferences difficult. A unified disease ontology is required that connects data annotated using diverse disease terminologies, and in which the terminology relationships are continuously maintained. The Mouse Genome Database (MGD, http://www.informatics.jax.org), Rat Genome Database (RGD, http://rgd.mcw.edu) and Disease Ontology (DO, http://www.disease-ontology.org) projects are collaborating to augment DO, aligning and incorporating disease terms used by MGD and RGD, and improving DO as a tool for unifying disease annotations across species. Coordinated assessment of MGD's and RGD's disease term annotations identified new terms that enhance DO's representation of human diseases. Expansion of DO term content and cross-references to clinical vocabularies (e.g. OMIM, ORDO, MeSH) has enriched the DO's domain coverage and utility for annotating many types of data generated from experimental and clinical investigations. The extension of anatomy-based DO classification structure of disease improves accessibility of terms and facilitates application of DO for computational research. A consistent representation of disease associations across data types from cellular to whole organism, generated from clinical and model organism studies, will promote the integration, mining and comparative analysis of these data. The coordinated enrichment of the DO and adoption of DO by MGD and RGD demonstrates DO's usability across human data, MGD, RGD and the rest of the model organism database community.

摘要

模式生物对于揭示人类疾病的机制和开发新的治疗工具至关重要。收集和整合相关模式生物和/或人类数据的研究人员通常应用不同的术语(词汇和本体),这使得比较和推理变得困难。需要一个统一的疾病本体,将使用不同疾病术语注释的数据连接起来,并不断维护术语关系。Mouse Genome Database(MGD,http://www.informatics.jax.org)、Rat Genome Database(RGD,http://rgd.mcw.edu)和 Disease Ontology(DO,http://www.disease-ontology.org)项目正在合作扩展 DO,对齐和整合 MGD 和 RGD 使用的疾病术语,并改进 DO 作为统一物种间疾病注释的工具。协调评估 MGD 和 RGD 的疾病术语注释确定了新术语,增强了 DO 对人类疾病的表示。DO 术语内容和对临床词汇(例如 OMIM、ORDO、MeSH)的交叉引用的扩展丰富了 DO 的领域覆盖范围和用于注释从实验和临床研究中生成的多种类型数据的实用性。基于解剖结构的 DO 疾病分类结构的扩展提高了术语的可访问性,并促进了 DO 在计算研究中的应用。来自临床和模式生物研究的从细胞到整个生物体的各种数据类型的疾病关联的一致表示将促进这些数据的整合、挖掘和比较分析。DO 的协调丰富和 MGD 和 RGD 的采用表明 DO 在人类数据、MGD、RGD 和其余模式生物数据库社区中的可用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf47/5897730/ca0cc4ad5427/dmm-11-032839-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验