Suppr超能文献

开放电子健康记录(openeHR)数据集中的营养基因组学信息。

Nutrigenomic Information in the openEHR Data Set.

机构信息

Faculty of Medicine, Center for Research in Health Technologies and Information Systems (CINTESIS), University of Porto, Porto, Portugal.

Faculty of Medical Science, Nova de Lisboa University, Nova Medical School, Lisboa, Portugal.

出版信息

Appl Clin Inform. 2018 Jan;9(1):221-231. doi: 10.1055/s-0038-1635115. Epub 2018 Mar 28.

Abstract

BACKGROUND

The traditional concept of personalized nutrition is based on adapting diets according to individual needs and preferences. Discussions about personalized nutrition have been on since the Human Genome Project, which has sequenced the human genome. Thenceforth, topics such as nutrigenomics have been assessed to help in better understanding the genetic variation influence on the dietary response and association between nutrients and gene expression. Hence, some challenges impaired the understanding about the nowadays important clinical data and about clinical data assumed to be important in the future.

OBJECTIVE

Finding the main clinical statements in the personalized nutrition field (nutrigenomics) to create the future-proof health information system to the openEHR server based on archetypes, as well as a specific nutrigenomic template.

METHODS

A systematic literature search was conducted in electronic databases such as PubMed. The aim of this systemic review was to list the chief clinical statements and create archetype and templates for openEHR modeling tools, namely, Ocean Archetype Editor and Ocean Template Design.

RESULTS

The literature search led to 51 articles; however, just 26 articles were analyzed after all the herein adopted inclusion criteria were assessed. Of these total, 117 clinical statements were identified, as well as 27 archetype-friendly concepts. Our group modeled four new archetypes (waist-to-height ratio, genetic test results, genetic summary, and diet plan) and finally created the specific nutrigenomic template for nutrition care.

CONCLUSION

The archetypes and the specific openEHR template developed in this study gave dieticians and other health professionals an important tool to their nutrigenomic clinical practices, besides a set of nutrigenomic data to clinical research.

摘要

背景

个性化营养的传统概念是基于根据个人需求和喜好来调整饮食。自从人类基因组计划(对人类基因组进行测序)以来,关于个性化营养的讨论就一直在进行。此后,人们评估了营养基因组学等主题,以帮助更好地了解遗传变异对饮食反应的影响以及营养素与基因表达之间的关系。因此,一些挑战阻碍了人们对当今重要临床数据以及未来被认为重要的临床数据的理解。

目的

找到个性化营养领域(营养基因组学)中的主要临床陈述,以便基于原型为 openEHR 服务器创建面向未来的健康信息系统,并创建特定的营养基因组模板。

方法

在 PubMed 等电子数据库中进行了系统的文献检索。本次系统评价的目的是列出主要的临床陈述,并为 openEHR 建模工具(即 Ocean Archetype Editor 和 Ocean Template Design)创建原型和模板。

结果

文献检索共得到 51 篇文章,但在评估了所有采用的纳入标准后,仅分析了 26 篇文章。在这些文章中,共确定了 117 项临床陈述和 27 项适合原型的概念。我们的小组构建了 4 个新原型(腰高比、基因测试结果、基因摘要和饮食计划),并最终为营养护理创建了特定的营养基因组模板。

结论

本研究开发的原型和特定的 openEHR 模板为营养师和其他健康专业人员提供了一个重要的工具,用于他们的营养基因组临床实践,以及一套用于临床研究的营养基因组数据。

相似文献

1
Nutrigenomic Information in the openEHR Data Set.
Appl Clin Inform. 2018 Jan;9(1):221-231. doi: 10.1055/s-0038-1635115. Epub 2018 Mar 28.
2
Challenges in Design and Creation of Genetic openEHR-Archetype.
Stud Health Technol Inform. 2018;247:835-839.
3
openEHR Archetype Use and Reuse Within Multilingual Clinical Data Sets: Case Study.
J Med Internet Res. 2020 Nov 2;22(11):e23361. doi: 10.2196/23361.
4
Nutrition Information in Oncology - Extending the Electronic Patient-Record Data Set.
J Med Syst. 2020 Sep 28;44(11):191. doi: 10.1007/s10916-020-01649-9.
5
Development of an openEHR Template for COVID-19 Based on Clinical Guidelines.
J Med Internet Res. 2020 Jun 10;22(6):e20239. doi: 10.2196/20239.
6
Role of OpenEHR as an open source solution for the regional modelling of patient data in obstetrics.
J Biomed Inform. 2015 Jun;55:174-87. doi: 10.1016/j.jbi.2015.04.004. Epub 2015 Apr 18.
7
Applying an Archetype-Based Approach to Electroencephalography/Event-Related Potential Experiments in the EEGBase Resource.
Front Neuroinform. 2017 Apr 6;11:24. doi: 10.3389/fninf.2017.00024. eCollection 2017.
8
Archetype relational mapping - a practical openEHR persistence solution.
BMC Med Inform Decis Mak. 2015 Nov 5;15:88. doi: 10.1186/s12911-015-0212-0.
10
An exploratory study using an openEHR 2-level modeling approach to represent common data elements.
J Am Med Inform Assoc. 2016 Sep;23(5):956-67. doi: 10.1093/jamia/ocv137. Epub 2016 Jan 23.

引用本文的文献

1
Nutrition Information in Oncology - Extending the Electronic Patient-Record Data Set.
J Med Syst. 2020 Sep 28;44(11):191. doi: 10.1007/s10916-020-01649-9.
2
Sync for Genes: Making Clinical Genomics Available for Precision Medicine at the Point-of-Care.
Appl Clin Inform. 2020 Mar;11(2):295-302. doi: 10.1055/s-0040-1708051. Epub 2020 Apr 22.

本文引用的文献

1
OpenEHR modeling for genomics in clinical practice.
Int J Med Inform. 2018 Dec;120:147-156. doi: 10.1016/j.ijmedinf.2018.10.007. Epub 2018 Oct 17.
2
The future of nutrition: Nutrigenomics and nutrigenetics in obesity and cardiovascular diseases.
Crit Rev Food Sci Nutr. 2018;58(17):3030-3041. doi: 10.1080/10408398.2017.1349731. Epub 2017 Aug 24.
5
A Novel Approach to the Nutrigenetics and Nutrigenomics of Obesity and Weight Management.
Curr Oncol Rep. 2016 Jul;18(7):43. doi: 10.1007/s11912-016-0529-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验