Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115.
Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
J Neurosci. 2018 Mar 28;38(13):3240-3251. doi: 10.1523/JNEUROSCI.3207-17.2018.
When an action potential invades a presynaptic terminal it evokes large, brief Ca signals that trigger vesicle fusion within milliseconds that is followed by a small residual Ca (Ca) signal. At many synapses Ca produces synaptic facilitation that lasts up to hundreds of milliseconds and, although less common, Ca can also evoke asynchronous release (AR) that persists for tens of milliseconds. The properties of facilitation and AR are very different, which suggests that they are mediated by distinct mechanisms. However, recently it has been shown that the slow calcium sensor synaptotagmin 7 (Syt7) mediates facilitation at many synapses where AR does not occur, and conversely Syt7 can mediate AR without mediating facilitation. Here we study cerebellar granule cell synapses onto stellate cells and Purkinje cells in mice of both sexes to assess the role of Syt7 in these phenomena at the same synapse. This is of particular interest at granule cell synapses where AR is much more calcium dependent and shorter-lived than facilitation. We find that Syt7 can mediate these two processes despite their divergent properties. In Syt7 knock-out animals, facilitation and AR are smaller and shorter lived than in wild-type animals, even though the initial probability of release and Ca signals are unchanged. Although there are short-lived Syt7-independent mechanisms that mediate facilitation and AR in Syt7 KO animals, we find that at granule cell synapses AR and facilitation are both mediated primarily by Syt7. At synapses made by cerebellar granule cells, presynaptic activity elevates calcium for tens of milliseconds, which in turn evokes both asynchronous release (AR) and synaptic facilitation. AR is more calcium sensitive and shorter-lived than facilitation at these synapses, suggesting that they are mediated by different mechanisms. However, we find that the slow calcium sensor synaptotagmin 7 mediates both of these phenomena. Small, rapidly decaying components of AR and facilitation are present in Syt7 KO animals, indicating that additional mechanisms can contribute to both AR and facilitation at these synapses.
当动作电位入侵突触前末梢时,它会引发大而短暂的 Ca 信号,在几毫秒内触发囊泡融合,随后是小的残余 Ca(Ca)信号。在许多突触中,Ca 产生持续数毫秒的突触易化,尽管不太常见,但 Ca 也可以引发持续数十毫秒的异步释放(AR)。易化和 AR 的性质非常不同,这表明它们是由不同的机制介导的。然而,最近的研究表明,慢钙传感器突触融合蛋白 7(Syt7)在许多不发生 AR 的突触中介导易化,相反,Syt7 可以介导 AR 而不介导易化。在这里,我们研究了两性小鼠小脑颗粒细胞突触到星状细胞和浦肯野细胞,以评估 Syt7 在同一突触中对这些现象的作用。这在 AR 比易化更依赖钙且持续时间更短的颗粒细胞突触中尤为重要。我们发现,尽管 Syt7 介导的这两个过程具有不同的特性,但 Syt7 可以介导这两个过程。在 Syt7 敲除动物中,易化和 AR 比野生型动物更小且持续时间更短,尽管释放的初始概率和 Ca 信号没有改变。尽管 Syt7 KO 动物中存在短暂的 Syt7 非依赖性机制来介导易化和 AR,但我们发现,在颗粒细胞突触中,AR 和易化都是由 Syt7 主要介导的。在小脑颗粒细胞形成的突触中,突触前活动使钙升高数十毫秒,这反过来又引发异步释放(AR)和突触易化。在这些突触中,AR 比易化更敏感且持续时间更短,这表明它们是由不同的机制介导的。然而,我们发现慢钙传感器突触融合蛋白 7 介导了这两种现象。在 Syt7 KO 动物中存在 AR 和易化的小而迅速衰减的成分,表明在这些突触中,其他机制也可以参与 AR 和易化。