Suppr超能文献

突触特化支持小脑皮质频率无关的浦肯野细胞输出。

Synaptic Specializations Support Frequency-Independent Purkinje Cell Output from the Cerebellar Cortex.

作者信息

Turecek Josef, Jackman Skyler L, Regehr Wade G

机构信息

Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.

Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.

出版信息

Cell Rep. 2016 Dec 20;17(12):3256-3268. doi: 10.1016/j.celrep.2016.11.081.

Abstract

The output of the cerebellar cortex is conveyed to the deep cerebellar nuclei (DCN) by Purkinje cells (PCs). Here, we characterize the properties of the PC-DCN synapse in juvenile and adult mice and find that prolonged high-frequency stimulation leads to steady-state responses that become increasingly frequency independent within the physiological firing range of PCs in older animals, resulting in a linear relationship between charge transfer and activation frequency. We used a low-affinity antagonist to show that GABA-receptor saturation occurs at this synapse but does not underlie frequency-invariant transmission. We propose that PC-DCN synapses have two components of release: one prominent early in trains and another specialized to maintain transmission during prolonged activation. Short-term facilitation offsets partial vesicle depletion to produce frequency-independent transmission.

摘要

小脑皮质的输出通过浦肯野细胞(PCs)传递至小脑深部核团(DCN)。在此,我们描述了幼年和成年小鼠中PC-DCN突触的特性,发现长时间高频刺激会导致稳态反应,在老年动物PC的生理放电范围内,这种反应变得越来越与频率无关,从而在电荷转移和激活频率之间形成线性关系。我们使用一种低亲和力拮抗剂来表明,该突触处发生了GABA受体饱和,但这并不是频率不变性传递的基础。我们提出,PC-DCN突触有两种释放成分:一种在串刺激早期占主导,另一种专门用于在长时间激活期间维持传递。短期易化抵消了部分囊泡耗竭,以产生与频率无关的传递。

相似文献

1
Synaptic Specializations Support Frequency-Independent Purkinje Cell Output from the Cerebellar Cortex.
Cell Rep. 2016 Dec 20;17(12):3256-3268. doi: 10.1016/j.celrep.2016.11.081.
3
Perineuronal Nets in the Deep Cerebellar Nuclei Regulate GABAergic Transmission and Delay Eyeblink Conditioning.
J Neurosci. 2018 Jul 4;38(27):6130-6144. doi: 10.1523/JNEUROSCI.3238-17.2018. Epub 2018 Jun 1.
7
Unusually Slow Spike Frequency Adaptation in Deep Cerebellar Nuclei Neurons Preserves Linear Transformations on the Subsecond Timescale.
J Neurosci. 2022 Oct 5;42(40):7581-7593. doi: 10.1523/JNEUROSCI.1869-21.2022. Epub 2022 Aug 22.
8
Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses.
Nature. 2017 Nov 23;551(7681):503-506. doi: 10.1038/nature24474. Epub 2017 Oct 30.
9
Characterization of synaptic connections between cortex and deep nuclei of the rat cerebellum in vitro.
Neuroscience. 1995 Feb;64(3):699-712. doi: 10.1016/0306-4522(94)00456-f.
10
Purkinje Cell Collaterals Enable Output Signals from the Cerebellar Cortex to Feed Back to Purkinje Cells and Interneurons.
Neuron. 2016 Jul 20;91(2):312-9. doi: 10.1016/j.neuron.2016.05.037. Epub 2016 Jun 23.

引用本文的文献

1
Short-term synaptic dynamics in the ventrolateral and dorsomedial periaqueductal gray.
bioRxiv. 2025 Aug 12:2025.08.12.669947. doi: 10.1101/2025.08.12.669947.
2
Computational anatomy: the cerebellar microzone computation.
Oxf Open Neurosci. 2025 May 16;4:kvaf001. doi: 10.1093/oons/kvaf001. eCollection 2025.
3
The cerebellar deep nuclei: a patch for rate codes?
Front Neural Circuits. 2025 Apr 8;19:1548123. doi: 10.3389/fncir.2025.1548123. eCollection 2025.
4
The cerebellum converts input data into a hyper low-resolution granule cell code with spatial dimensions: a hypothesis.
R Soc Open Sci. 2025 Mar 26;12(3):241665. doi: 10.1098/rsos.241665. eCollection 2025 Mar.
6
Synaptotagmin-7 Counteracts Short-Term Depression during Phasic Dopamine Release.
eNeuro. 2024 Mar 12;11(3). doi: 10.1523/ENEURO.0501-23.2024. Print 2024 Mar.
8
Interpretation of presynaptic phenotypes of synaptic plasticity in terms of a two-step priming process.
J Gen Physiol. 2024 Jan 1;156(1). doi: 10.1085/jgp.202313454. Epub 2023 Dec 19.
9
A Purkinje cell to parabrachial nucleus pathway enables broad cerebellar influence over the forebrain.
Nat Neurosci. 2023 Nov;26(11):1929-1941. doi: 10.1038/s41593-023-01462-w. Epub 2023 Nov 2.
10
Rate versus synchrony codes for cerebellar control of motor behavior.
Neuron. 2023 Aug 2;111(15):2448-2460.e6. doi: 10.1016/j.neuron.2023.07.002.

本文引用的文献

1
Purkinje Cell Collaterals Enable Output Signals from the Cerebellar Cortex to Feed Back to Purkinje Cells and Interneurons.
Neuron. 2016 Jul 20;91(2):312-9. doi: 10.1016/j.neuron.2016.05.037. Epub 2016 Jun 23.
2
Spontaneous Activity Defines Effective Convergence Ratios in an Inhibitory Circuit.
J Neurosci. 2016 Mar 16;36(11):3268-80. doi: 10.1523/JNEUROSCI.3499-15.2016.
3
Determining synaptic parameters using high-frequency activation.
J Neurosci Methods. 2016 May 1;264:136-152. doi: 10.1016/j.jneumeth.2016.02.021. Epub 2016 Mar 10.
4
The cerebellum linearly encodes whisker position during voluntary movement.
Elife. 2016 Jan 19;5:e10509. doi: 10.7554/eLife.10509.
5
Nonequivalent release sites govern synaptic depression.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):E378-86. doi: 10.1073/pnas.1523671113. Epub 2015 Dec 29.
6
Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice.
Nat Neurosci. 2015 Dec;18(12):1798-803. doi: 10.1038/nn.4167. Epub 2015 Nov 9.
7
Merits and Limitations of Vesicle Pool Models in View of Heterogeneous Populations of Synaptic Vesicles.
Neuron. 2015 Sep 23;87(6):1131-1142. doi: 10.1016/j.neuron.2015.08.038.
8
Control of inhibitory synaptic outputs by low excitability of axon terminals revealed by direct recording.
Neuron. 2015 Mar 18;85(6):1273-88. doi: 10.1016/j.neuron.2015.02.013. Epub 2015 Feb 26.
9
Implementation of linear sensory signaling via multiple coordinated mechanisms at central vestibular nerve synapses.
Neuron. 2015 Mar 4;85(5):1132-44. doi: 10.1016/j.neuron.2015.01.017. Epub 2015 Feb 19.
10
Short latency cerebellar modulation of the basal ganglia.
Nat Neurosci. 2014 Dec;17(12):1767-75. doi: 10.1038/nn.3868. Epub 2014 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验