Krebs Institute, University of Sheffield, Sheffield, S10 2TN, UK.
Nat Commun. 2018 Mar 28;9(1):1263. doi: 10.1038/s41467-018-03551-y.
Biopolymer composite cell walls maintain cell shape and resist forces in plants, fungi and bacteria. Peptidoglycan, a crucial antibiotic target and immunomodulator, performs this role in bacteria. The textbook structural model of peptidoglycan is a highly ordered, crystalline material. Here we use atomic force microscopy (AFM) to image individual glycan chains in peptidoglycan from Escherichia coli in unprecedented detail. We quantify and map the extent to which chains are oriented in a similar direction (orientational order), showing it is much less ordered than previously depicted. Combining AFM with size exclusion chromatography, we reveal glycan chains up to 200 nm long. We show that altered cell shape is associated with substantial changes in peptidoglycan biophysical properties. Glycans from E. coli in its normal rod shape are long and circumferentially oriented, but when a spheroid shape is induced (chemically or genetically) glycans become short and disordered.
生物聚合物复合细胞壁维持植物、真菌和细菌细胞的形状并抵抗其内部的力。肽聚糖作为一种关键的抗生素靶标和免疫调节剂,在细菌中发挥着这一作用。肽聚糖的教科书结构模型是一种高度有序的结晶物质。在这里,我们使用原子力显微镜(AFM)以前所未有的细节对来自大肠杆菌的肽聚糖中的单个聚糖链进行成像。我们定量并绘制了链以相似方向取向的程度(取向有序性),表明其有序性远低于之前的描述。我们将 AFM 与尺寸排阻色谱法结合使用,揭示了长达 200nm 的聚糖链。我们表明,细胞形状的改变与肽聚糖生物物理性质的显著变化有关。处于正常杆状形状的大肠杆菌中的糖链又长又呈圆周取向,但当诱导出球形形状(化学或遗传)时,糖链变短且无序。