Department of Biological Sciences, University of Southern California, 1050 Child Way, Los Angeles, 90089, California, USA.
Department of Chemistry, University of Southern California, 1050 Child Way, Los Angeles, 90089, California, USA.
Sci Rep. 2018 Mar 28;8(1):5344. doi: 10.1038/s41598-018-23625-7.
Many biotechniques use complementary split-fluorescent protein (sFPs) fragments to visualize protein-protein interactions, image cells by ensemble or single molecule fluorescence microscopy, or assemble nanomaterials and protein superstructures. Yet, the reassembly mechanisms of sFPs, including fragment binding rates, folding, chromophore maturation and overall photophysics remain poorly characterized. Here, we evolved asymmetric and self-complementing green, yellow and cyan sFPs together with their full-length equivalents (flFPs) and described their biochemical and photophysical properties in vitro and in cells. While re-assembled sFPs have spectral properties similar to flFPs, they display slightly reduced quantum yields and fluorescence lifetimes due to a less sturdy β-barrel structure. The complementation of recombinant sFPs expressed in vitro follows a conformational selection mechanism whereby the larger sFP fragments exist in a monomer-dimer equilibrium and only monomers are competent for fluorescence complementation. This bimolecular fragment interaction involves a slow and irreversible binding step, followed by chromophore maturation at a rate similar to that of flFPs. When expressed as fusion tags in cells, sFPs behave as monomers directly activated with synthetic complementary fragments. This study resulted in the development of sFP color variants having improved maturation kinetics, brightness, and photophysics for fluorescence microscopy imaging of cellular processes, including single molecule detection.
许多生物技术都利用互补分裂荧光蛋白(sFPs)片段来可视化蛋白质-蛋白质相互作用,通过荧光显微镜的整体或单分子荧光成像,或组装纳米材料和蛋白质超结构。然而,sFPs 的重组机制,包括片段结合速率、折叠、生色团成熟和整体光物理特性,仍未得到很好的描述。在这里,我们共同进化了不对称和自互补的绿色、黄色和青色 sFPs 及其全长等效物(flFPs),并在体外和细胞中描述了它们的生化和光物理特性。虽然重新组装的 sFPs 具有与 flFPs 相似的光谱特性,但由于 β-桶结构不太坚固,它们的量子产率和荧光寿命略有降低。在体外表达的重组 sFPs 的互补遵循构象选择机制,其中较大的 sFP 片段存在单体-二聚体平衡,只有单体才能进行荧光互补。这种双分子片段相互作用涉及一个缓慢且不可逆的结合步骤,随后是与 flFPs 相似的速率的生色团成熟。当作为融合标签在细胞中表达时,sFPs 作为单体直接与合成的互补片段激活。本研究开发了 sFP 颜色变体,其成熟动力学、亮度和光物理特性得到了改善,可用于细胞过程的荧光显微镜成像,包括单分子检测。