Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America.
Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, United States of America.
PLoS Genet. 2018 Mar 29;14(3):e1007288. doi: 10.1371/journal.pgen.1007288. eCollection 2018 Mar.
Modification defects in the tRNA anticodon loop often impair yeast growth and cause human disease. In the budding yeast Saccharomyces cerevisiae and the phylogenetically distant fission yeast Schizosaccharomyces pombe, trm7Δ mutants grow poorly due to lack of 2'-O-methylation of C32 and G34 in the tRNAPhe anticodon loop, and lesions in the human TRM7 homolog FTSJ1 cause non-syndromic X-linked intellectual disability (NSXLID). However, it is unclear why trm7Δ mutants grow poorly. We show here that despite the fact that S. cerevisiae trm7Δ mutants had no detectable tRNAPhe charging defect in rich media, the cells constitutively activated a robust general amino acid control (GAAC) response, acting through Gcn2, which senses uncharged tRNA. Consistent with reduced available charged tRNAPhe, the trm7Δ growth defect was suppressed by spontaneous mutations in phenylalanyl-tRNA synthetase (PheRS) or in the pol III negative regulator MAF1, and by overexpression of tRNAPhe, PheRS, or EF-1A; all of these also reduced GAAC activation. Genetic analysis also demonstrated that the trm7Δ growth defect was due to the constitutive robust GAAC activation as well as to the reduced available charged tRNAPhe. Robust GAAC activation was not observed with several other anticodon loop modification mutants. Analysis of S. pombe trm7 mutants led to similar observations. S. pombe Trm7 depletion also resulted in no observable tRNAPhe charging defect and a robust GAAC response, and suppressors mapped to PheRS and reduced GAAC activation. We speculate that GAAC activation is widely conserved in trm7 mutants in eukaryotes, including metazoans, and might play a role in FTSJ1-mediated NSXLID.
tRNA 反密码子环的修饰缺陷常常会损害酵母的生长并导致人类疾病。在出芽酵母酿酒酵母和系统发育上相距甚远的裂殖酵母 Schizosaccharomyces pombe 中,trm7Δ 突变体由于 tRNAPhe 反密码子环中 C32 和 G34 的 2'-O-甲基化缺失以及人类 TRM7 同源物 FTSJ1 的损伤而生长不良,导致非综合征性 X 连锁智力障碍 (NSXLID)。然而,目前尚不清楚为什么 trm7Δ 突变体生长不良。我们在这里表明,尽管酿酒酵母 trm7Δ 突变体在丰富培养基中没有检测到 tRNAPhe 充电缺陷,但细胞持续激活了强大的一般氨基酸控制 (GAAC) 反应,该反应通过 Gcn2 起作用,Gcn2 可感知未带电的 tRNA。与可用的已充电 tRNAPhe 减少一致,trm7Δ 生长缺陷被苯丙氨酸-tRNA 合成酶 (PheRS) 或 III 型聚合酶负调节因子 MAF1 的自发突变或 tRNAPhe、PheRS 或 EF-1A 的过表达所抑制;所有这些也降低了 GAAC 的激活。遗传分析还表明,trm7Δ 生长缺陷是由于持续的强大 GAAC 激活以及可用的已充电 tRNAPhe 的减少。其他几种反密码子环修饰突变体并未观察到强大的 GAAC 激活。对裂殖酵母 trm7 突变体的分析也得出了类似的观察结果。酿酒酵母 Trm7 缺失也不会导致可观察到的 tRNAPhe 充电缺陷和强大的 GAAC 反应,并且抑制子定位于 PheRS 并降低了 GAAC 的激活。我们推测,GAAC 激活在真核生物(包括后生动物)的 trm7 突变体中广泛保守,并且可能在 FTSJ1 介导的 NSXLID 中发挥作用。