Suppr超能文献

核糖体与两个 S. pombe tRNA 修饰突变体之间的联系,这些突变体易发生 tRNA 快速衰变。

A connection between the ribosome and two S. pombe tRNA modification mutants subject to rapid tRNA decay.

机构信息

Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America.

Department of Biology, University of Rochester, Rochester, New York, United States of America.

出版信息

PLoS Genet. 2024 Jan 31;20(1):e1011146. doi: 10.1371/journal.pgen.1011146. eCollection 2024 Jan.

Abstract

tRNA modifications are crucial in all organisms to ensure tRNA folding and stability, and accurate translation. In both the yeast Saccharomyces cerevisiae and the evolutionarily distant yeast Schizosaccharomyces pombe, mutants lacking certain tRNA body modifications (outside the anticodon loop) are temperature sensitive due to rapid tRNA decay (RTD) of a subset of hypomodified tRNAs. Here we show that for each of two S. pombe mutants subject to RTD, mutations in ribosomal protein genes suppress the temperature sensitivity without altering tRNA levels. Prior work showed that S. pombe trm8Δ mutants, lacking 7-methylguanosine, were temperature sensitive due to RTD, and that one class of suppressors had mutations in the general amino acid control (GAAC) pathway, which was activated concomitant with RTD, resulting in further tRNA loss. We now find that another class of S. pombe trm8Δ suppressors have mutations in rpl genes, encoding 60S subunit proteins, and that suppression occurs with minimal restoration of tRNA levels and reduced GAAC activation. Furthermore, trm8Δ suppression extends to other mutations in the large or small ribosomal subunit. We also find that S. pombe tan1Δ mutants, lacking 4-acetylcytidine, are temperature sensitive due to RTD, that one class of suppressors have rpl mutations, associated with minimal restoration of tRNA levels, and that suppression extends to other rpl and rps mutations. However, although S. pombe tan1Δ temperature sensitivity is associated with some GAAC activation, suppression by an rpl mutation only modestly inhibits GAAC activation. We propose a model in which ribosomal protein mutations result in reduced ribosome concentrations, leading to both reduced ribosome collisions and a reduced requirement for tRNA, with these effects having different relative importance in trm8Δ and tan1Δ mutants. This model is consistent with our results in S. cerevisiae trm8Δ trm4Δ mutants, known to undergo RTD, fueling speculation that this model applies across eukaryotes.

摘要

tRNA 修饰对于所有生物都至关重要,可确保 tRNA 折叠和稳定性,并实现翻译的准确性。在酿酒酵母(Saccharomyces cerevisiae)和进化上相距甚远的裂殖酵母(Schizosaccharomyces pombe)中,由于某些 tRNA 体修饰(反密码环外)缺失的突变体导致一组修饰不足的 tRNA 快速衰减(RTD),这些突变体均表现出对温度敏感的特征。在这里,我们发现对于两种 S. pombe RTD 突变体中的每一种,核糖体蛋白基因突变均能抑制温度敏感性,而不改变 tRNA 水平。先前的工作表明,缺乏 7-甲基鸟苷的 S. pombe trm8Δ 突变体由于 RTD 而对温度敏感,一类抑制剂具有一般氨基酸控制(GAAC)途径的突变,该途径与 RTD 同时激活,导致进一步的 tRNA 损失。我们现在发现,另一类 S. pombe trm8Δ 抑制剂具有 rpl 基因突变,编码 60S 亚基蛋白,并且抑制作用伴随着最小程度的 tRNA 水平恢复和 GAAC 激活减少。此外,trm8Δ 的抑制作用扩展到其他大或小核糖体亚基的突变。我们还发现,缺乏 4-乙酰胞苷的 S. pombe tan1Δ 突变体由于 RTD 而对温度敏感,一类抑制剂具有 rpl 基因突变,与最小程度的 tRNA 水平恢复相关,并且抑制作用扩展到其他 rpl 和 rps 突变。然而,尽管 S. pombe tan1Δ 的温度敏感性与一些 GAAC 激活有关,但 rpl 基因突变的抑制作用仅适度抑制 GAAC 激活。我们提出了一个模型,即核糖体蛋白突变导致核糖体浓度降低,从而导致核糖体碰撞减少和对 tRNA 的需求减少,在 trm8Δ 和 tan1Δ 突变体中,这些效应的相对重要性不同。该模型与我们在酿酒酵母(Saccharomyces cerevisiae)trm8Δ trm4Δ 突变体中的结果一致,已知该突变体经历 RTD,引发了对该模型适用于整个真核生物的猜测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/284a/10861057/a42d1b1b9ca1/pgen.1011146.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验