Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA.
RNA. 2012 Oct;18(10):1921-33. doi: 10.1261/rna.035287.112. Epub 2012 Aug 21.
Post-transcriptional modification of the tRNA anticodon loop is critical for translation. Yeast Trm7 is required for 2'-O-methylation of C(32) and N(34) of tRNA(Phe), tRNA(Trp), and tRNA(Leu(UAA)) to form Cm(32) and Nm(34), and trm7-Δ mutants have severe growth and translation defects, but the reasons for these defects are not known. We show here that overproduction of tRNA(Phe) suppresses the growth defect of trm7-Δ mutants, suggesting that the crucial biological role of Trm7 is the modification of tRNA(Phe). We also provide in vivo and in vitro evidence that Trm7 interacts with ORF YMR259c (now named Trm732) for 2'-O-methylation of C(32), and with Rtt10 (named Trm734) for 2'-O-methylation of N(34) of substrate tRNAs and provide evidence for a complex circuitry of anticodon loop modification of tRNA(Phe), in which formation of Cm(32) and Gm(34) drives modification of m(1)G(37) (1-methylguanosine) to yW (wyebutosine). Further genetic analysis shows that the slow growth of trm7-Δ mutants is due to the lack of both Cm(32) and Nm(34), and the accompanying loss of yW, because trm732-Δ trm734-Δ mutants phenocopy trm7-Δ mutants, whereas each single mutant is healthy; nonetheless, TRM732 and TRM734 each have distinct roles, since mutations in these genes have different genetic interactions with trm1-Δ mutants, which lack m(2,2)G(26) in their tRNAs. We speculate that 2'-O-methylation of the anticodon loop may be important throughout eukaryotes because of the widespread conservation of Trm7, Trm732, and Trm734 proteins, and the corresponding modifications, and because the putative human TRM7 ortholog FTSJ1 is implicated in nonsyndromic X-linked mental retardation.
反密码子环的转录后修饰对于翻译至关重要。酵母 Trm7 对于 tRNA(Phe)、tRNA(Trp)和 tRNA(Leu(UAA))的 C(32)和 N(34)的 2'-O-甲基化形成 Cm(32)和 Nm(34)是必需的,trm7-Δ 突变体有严重的生长和翻译缺陷,但这些缺陷的原因尚不清楚。我们在这里表明,过量表达 tRNA(Phe)可以抑制 trm7-Δ 突变体的生长缺陷,这表明 Trm7 的关键生物学作用是对 tRNA(Phe)的修饰。我们还提供了体内和体外证据,证明 Trm7 与 ORF YMR259c(现在称为 Trm732)相互作用,进行 C(32)的 2'-O-甲基化,与 Rtt10(称为 Trm734)相互作用,进行底物 tRNA 的 N(34)的 2'-O-甲基化,并提供了 tRNA(Phe)反密码子环修饰的复杂电路的证据,其中 Cm(32)和 Gm(34)的形成驱动 m(1)G(37)(1-甲基鸟苷)向 yW(wybutosine)的修饰。进一步的遗传分析表明,trm7-Δ 突变体生长缓慢是由于缺乏 Cm(32)和 Nm(34),以及伴随的 yW 的缺失,因为 trm732-Δ trm734-Δ 突变体与 trm7-Δ 突变体表型相同,而每个单突变体都是健康的;尽管如此,TRM732 和 TRM734 都有不同的作用,因为这些基因的突变与缺乏 tRNA 中 m(2,2)G(26)的 trm1-Δ 突变体有不同的遗传相互作用。我们推测,由于 Trm7、Trm732 和 Trm734 蛋白以及相应修饰在真核生物中的广泛保守性,2'-O-甲基化的反密码子环可能在整个真核生物中都很重要,并且假定的人类 TRM7 同源物 FTSJ1 与非综合征性 X 连锁智力低下有关。